RICE

ENGINEERING

105 School Creek Trail \| Luxemburg, WI 54217
(P) 920.617.1042 | (F) 920.617.1100

01/24/2024

STAR System International Ltd.
7465 Conway Avenue
Burnaby, BC V5E 2P7

Project: STAR System Aluminum Railing

To Whom It May Concern:

I would like to take this opportunity to introduce myself and our firm. My name is Joseph Bauer and I have fifteen years of experience in the design of railings. Our firm, Rice Engineering, is located northeast of Green Bay, Wisconsin, in the village of Luxemburg. Rice Engineering is licensed in all (50) U.S. States, Puerto Rico, Guam, and ten provinces of Canada. We have over 25 years of experience in the curtain wall and building envelope industry. Our fifty structural engineers and drafters provide structural calculations and shop drawings to installers and manufactures in the design of:

- Curtain walls, windows, storefront and blast design
- Composite and metal panel cladding
- Sunshades, canopies and awnings
- Louvers, fans, vents and hatches
- Stairs, platforms, mezzanines, railings and guardrails
- Glass walls, channel glass, glass stairs and floors
- Roof mounted equipment
- Florida product approvals and Miami Dade NOA's

Rice Engineering has more than 18 years of experience in railing engineering and anchorage design. Our Railing Engineering Group provides structural analysis and calculations for glass, aluminum, stainless steel, and steel railings with various infills and anchorage into all types of building structure. Each design considers live loads, wind loads, and infill loads based on IBC specifications and local building codes.

Our Midwest location allows us to provide our services at a competitive rate. We understand there are many options for engineering services. Therefore, we focus on working with our customers to provide cost effective solutions that meet their needs, in a timely manner. Our typical turn time is one to three weeks for engineering. If the project you are working on requires project specific calculations, please contact us and we can provide you with a quote.

Sincerely,

Joseph Bauer, P.E. (FL, GA, ID, KY, MA, MI, NY, OK, WI)
Manager - Railings Engineering Group

Cc: File

STAR System International Ltd.
7465 Conway Avenue
Burnaby, BC V5E 2P7
RE: \quad STAR System Aluminum Railing - IBC 2021

January 24, 2023

To whom it may concern:

Rice Engineering is pleased to submit this report and calculations which summarizes our analysis of the STAR Aluminum Railing System.

The calculations performed are for the STAR System "Classic Style" Picket Rail based on each members die drawing and assembly drawing which was provided to Rice Engineering previously by East \& West Alum Craft. These drawings can be found at the end of the report.

Our conclusions for this report are based on design loads provided by the International Building Code 2021 (IBC 2021). The analysis provided meets the appropriate allowable stress design methods set forth by the Aluminum Association's "Aluminum Design Manual". The posts, post reinforcement, and base plates are designed solely by utilizing the test data as set forth per IBC 2021.

For the purposes of this report, a surface mount condition has been considered for two different substrate types: F'c= 4,000 psi normal weight cracked concrete and Southern Pine wood blocking ($\mathrm{SG}=0.55$ minimum). There is also an option for S-P-F wood blocking ($\mathrm{SG}=0.42$ minimum). The calculations are limited to the anchors embedment depth / penetration, spacing and edge distance dimensions as shown in the report. Also included are calculations for a surface core mounted condition. If the field conditions for the rail system installation are not as provided in this report, please contact East \& West Alum Craft for custom anchorage design calculations. If using a core mounted condition, please contact the Engineer of Record on the project to verify concrete breakout is OK.

Since there are infinite layout possibilities for guardrails, the calculations provided with this report are limited to straight run guardrail systems with consideration for 1 -span and $2+$ span layouts. For guardrail layouts that include U-shapes, L-shapes or other custom layouts, please contact East \& West Alum Craft for project specific guardrail calculations.

ENGINEERING

Conclusions for STAR System Commercial Guards:

1. It is assumed that the commercial guardrails are a maximum height of $42^{\prime \prime}$
2. Per the IBC 2021, a minimum design concentrated load of 200 LB applied in any direction at the top of the guard is required. Separately, a 50 PLF design uniform load in any direction is required at the top of the guard. Finally, a 50 LB lateral load applied over $1 \mathrm{ft}^{2}$ of the picket infill is required
3. Based on the above criteria from \#2, the maximum post spacing for commercial applications for rail systems with 6061-T6 posts and 2 " tall 6061-T6 I beam reinforcement are:

1-Span Guard (2 posts):	$6^{\prime}-5 "$ maximum
2-Span or greater:	$4^{\prime}-0^{\prime \prime}$ maximum

4. See calculation sheets A4 through A6 for the appropriate standard concrete anchorage, wood anchorage and core mounted layout requirements for commercial applications.

Attachments:

The following sheets are the final calculations and STAR System layout and appropriate die drawings for the IBC 2021 analysis.

The structural calculations contained within this report are not intended to be submitted as project specific structural calculations. Rice Engineering assumes no liability for use of calculations. If project specific calculations are required, please contact Rice Engineering, 920-617-1042. The analysis within this report provides an acceptable engineered design for the STAR System to resist the specified loading, as well as the requirements outlined in IBC 2015.

If there are any questions regarding this submittal, please contact STAR System International Ltd..

Sincerely,

REI Project \# R23-08-261

Design Criteria:

1. Railing live loads per Building Code (IBC 2021): Guardrails

50 plf uniform load in any direction on handrails and top rails of guards
200 pound concentrated load in any direction on handrails and top rails of guards
50 lb concentrated load over $1 \mathrm{ft}^{2}$ of infill area
Concentrated load and uniform loads need not be assumed to act concurrently
2. Metal railing deflections per ICC-ES AC273 and IBC.
3. Aluminum members designed per AA, "Aluminum Design Manual".
4. Member sizes, grade, alloy and strengths shall be as recommended in the calculation package.
5. Stainless steel screws (ASTM A193) \& bolts (ASTM F593) to be condition "CW", $\mathbf{3 0 0}$ Series, group $\mathbf{1}$ or $\mathbf{2 , F y = 6 5} \mathbf{k s i}$.
6. All other fasteners shall be the size and strength as is recommended in the calculation package.
7. Aluminum welds to be $\mathbf{5 3 5 6}$ filler alloy unless otherwise noted.
8. Concrete strength is assumed to be $\mathbf{F}^{\prime} \mathbf{c}=\mathbf{4 , 0 0 0} \mathbf{~ p s i}$, normal weight, cracked.
9. Cement or epoxy based grout shall be a minimum F'c=6,000 psi, non-metallic, non-shrink.
10. Concrete anchors shall be as recommended in the calculation package. Installer is responsible for maintaining the fastener spacing, edge distance, end distance, embedment depth and minimum substrate thickness that is recommended in the calculation package.
11. Concrete anchors shall be installed per manufacturer's recommended installation procedures, including recommended ambient temperatures for chemical/adhesive anchors.
12. Concrete slabs and curbs, structural steel, masonry units, wood blocking, and all other anchorage substrates designed by others.
13. Shim dis-similar metals. Maximum recommended shim height for guardrails is $1 / 2^{\prime \prime}$, full bearing shims.
14. Design of material separation to prevent reaction between dissimilar materials not designed by Rice Engineering Inc.
15. Wood substrates are assumed to be Southern Pine or Equal, SG=0.55 minimum or S-P-F or Equal, SG = 0.42 minimum.
16. Any and all $3^{\text {rd }}$ party testing is not part of this submittal and is included for reference purposes only.

Disclaimer:

This Certification is limited to the structural design of structural components of this handrail or divider system. It does NOT include responsibility for:

- Structural design of misc. hardware (latches, hinges, etc.).
- Structural design of concrete slabs and other masonry units
- Structural design of wood blocking or wood framing
- Structural design of all other anchorage substrates
- Glass breakage due to airborne debris or foreign objects
- The manufacture, assembly, or installation of the system.
- Quantities of materials or dimensional accuracy of drawings

Cover Page 1 of $\mathbf{2}$

The structural calculations contained within this report are not intended to be submitted as project specific structural calculations. Rice Engineering assumes no liability for use of calculations. If project specific calculations are required, please contact Rice Engineering, 920-617-1042. The analysis within this report provides an acceptable engineered design for the STAR Picket Rail System to resist the specified loading, as well as the requirements outlined in IBC 2021.

Page:	Description:	Date:	Revision:
IBC	IBC Analysis	$1 / 10 / 24$	
A1	Top Rail	$1 / 10 / 24$	
A2-A2A	Post Analysis	$1 / 10 / 24$	
A2.1	Post Analysis	$1 / 10 / 24$	
A3-A3.1	Picket Infill	$1 / 10 / 24$	
A4	Anchorage to Concrete	$1 / 10 / 24$	
A5	Anchorage to Wood	$1 / 10 / 24$	
A5A-A5C	Lag Screws	$1 / 10 / 24$	
A5.1	Lag Screws	$1 / 10 / 24$	
A6	Anchorage to Grout	$1 / 10 / 24$	
S1-S2	Section Properties	$1 / 10 / 24$	
	System Drawings		
	Appendix A - Concrete Anchor Data		
	Appendix B - 3rd Party Testing (Not part of this submittal)		

Disclaimer:

This Certification is limited to the structural design of structural components of this handrail or divider system. It does NOT include responsibility for:

- Structural design of misc. hardware (latches, hinges, etc.).
- Structural design of concrete slabs and other masonry units
- Structural design of wood blocking or wood framing
- Structural design of all other anchorage substrates
- Glass breakage due to airborne debris or foreign objects
- The manufacture, assembly, or installation of the system.
- Quantities of materials or dimensional accuracy of drawings

The structural calculations contained within this report are not intended to be submitted as project specific structural calculations. Rice Engineering assumes no liability for use of calculations. If project specific calculations are required, please contact Rice Engineering, 920-617-1042. The analysis within this report provides an acceptable engineered design for the STAR Picket Rail System to resist the specified loading, as well as the requirements outlined in IBC 2021.

IBC Analysis	Detail Ref.	Sheet No: IBC

International Building Code 2021 Analysis

50 plf uniform load in any direction on top rail
200\# concentrated load in any direction on top rail
50\# concentrated load applied to 1 square foot of infill

RICE	105 School Creek Trail Luxemburg, WI 54217 Phone: (920) 617-1042 Fax: (920) 617-1100 www.rice-inc.com	Project Description: Star System - IBC 2021	Job No: R23-08-261			
			Engineer	JDB	Sheet No:	IBC
			Date:	1/10/2024	Rev:	
Template: REI-MC-5700			Chk By:		Date:	

Extruded Railing and Post

IBC Rail Analysis (1-Span)	Detail Ref.	Sheet No: A1

Input Variables:

$\mathrm{FH}_{\mathrm{H}}:=50$	PLF	Load Case 1 (Uniform Load)
$\mathrm{FV}_{\mathrm{V}}:=50$	PLF	Vertical uniform load (Simultaneous
$\mathrm{P}:=200$	ib	Load Case 2 (Point Load)
$\mathrm{L}_{\mathrm{bp}}:=3$	in	Unbraced Length of Post
$\mathrm{L}_{\mathrm{W}}:=0$	in	Max Bottom Rail Weld Length
$\mathrm{L}:=77$	in	$\mathbf{6}^{\mathbf{\prime}-5 " \text { " MAX RAIL SPAN }}$

Number of Railing Spans:

1 span (Worst Case Check for Railing)2 span3 or more spans

Top Rail Section: Insert Channel:

2 1/2" x 2" Top Rail RT-100/101

```
Top Rail V Channel
```


Railing Temper: Channel Temper:

6063-T56063-T56005-T5 or equal
(v) 6005-T5 or equal
Open SectionClosed Section

Calculations: \qquad All Calculations Below This Line Are Automatic

Railing Properties

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{xr}}=0.320 \quad \text { in }^{4} \\
& \mathrm{I}_{\mathrm{yr}}=0.500 \quad \text { in }^{4} \\
& \mathrm{~S}_{\mathrm{xr}}=0.260 \quad \text { in }^{3} \\
& \mathrm{~S}_{\mathrm{yr}}=0.350 \quad \text { in }^{3} \\
& \mathrm{~J}_{\mathrm{r}}=0.400 \quad \text { in }^{4} \\
& \mathrm{E}_{\mathrm{r}}=10100000 \quad \text { psi } \\
& \mathrm{d}_{\mathrm{r}}=2.50 \quad \text { in }
\end{aligned}
$$

Channel Properties

$$
\begin{aligned}
& I_{\text {xch }}=0.009 \quad \text { in }^{4} \\
& I_{\text {ych }}=0.054 \quad \text { in }^{4} \\
& S_{\text {xch }}=0.017 \quad \text { in }^{3} \\
& S_{\text {ych }}=0.078 \quad \text { in }^{3} \\
& J_{\text {ch }}=0.001 \quad \text { in }^{4} \\
& E_{\text {ch }}=10100000 \quad \text { psi } \\
& d_{\text {ch }}=1.38 \quad \text { in }
\end{aligned}
$$

Computational Factors

$K_{1}:=(8 \cdot q 1)+(8 \cdot q 2)+(9.5 \cdot q 3) \quad K_{1}=8$
$\mathrm{K}_{2}:=(4 \cdot \mathrm{q} 1)+(5 \cdot \mathrm{q} 2)+(5 \cdot \mathrm{q} 3) \quad \mathrm{K}_{2}=4$
$K_{3}:=(48 \cdot q 1)+(66 \cdot q 2)+(87 \cdot q 3) \quad K_{3}=48$

$$
\begin{array}{ll}
\mathrm{I}_{\mathrm{xtotr}}:=\mathrm{I}_{\mathrm{xr}}+\mathrm{I}_{\mathrm{xch}} & \text { Intotr }=0.329 \\
\text { In }^{4} \\
\text { Iytotr }:=\mathrm{I}_{\mathrm{yr}}+\mathrm{I}_{\mathrm{ych}} & \text { Iytotr }=0.554 \\
\text { in }^{4}
\end{array}
$$

$\underbrace{\text { RICE }}_{E N G I N E E R I N G}$	105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048 www.rice-inc.com	Project Description: Star System - IBC 2021	Job No: R23-08-261			
			Engineer	JDB	Sheet No:	A1
			Date:	1/10/2024	Rev:	
Template: REI-MC-5719			Chk By:		Date:	

Railing Analysis:

$$
\mathrm{L}_{\mathrm{br}}:=\mathrm{L}-2 \quad \mathrm{~W}_{\mathrm{h}}:=\frac{\mathrm{FH}^{12}}{12} \quad \mathrm{~W}_{\mathrm{v}}:=\frac{\mathrm{FV}}{12}
$$

IBC Rail Analysis (1-Span)	Detail Ref.	Sheet No: A1 A

Case 1 Uniform Load:

$$
\begin{aligned}
& \Delta_{\mathrm{yr}} 1:=\frac{5 \cdot \mathrm{~W}_{\mathrm{h}} \cdot \mathrm{~L}^{4}}{384 \cdot \mathrm{E}_{\mathrm{r}} \cdot \mathrm{l}_{\mathrm{ytotr}}} \\
& \Delta \mathrm{yr} 1=0.341 \quad \text { in } \quad \text { Modeled as a simple span } \\
& \Delta_{\mathrm{xr} 1}:=\frac{5 \cdot \mathrm{~W}_{\mathrm{V}} \cdot \mathrm{~L}^{4}}{384 \cdot \mathrm{E}_{\mathrm{r}} \cdot \mathrm{I}_{\mathrm{xtotr}}} \\
& \Delta_{\mathrm{xr}} 1=0.57 \quad \text { in } \\
& \Delta_{\text {allr }}:=\frac{\mathrm{L}}{96} \\
& \Delta \text { allr }=0.8 \quad \text { in } \quad \text { Per ASTM Specification E985/ICCAC273 } \\
& M_{y r m a x}:=\frac{W_{h} \cdot L^{2}}{K_{1}} \\
& M_{y r m a x}=3088 \quad \text { in } \cdot \mathrm{lb} \\
& M_{\text {xrmax }}:=\frac{W_{V} \cdot L^{2}}{K_{1}} \\
& \left.\mathrm{r}_{\mathrm{yr}}:=\frac{1}{1.7} \cdot \sqrt{\frac{\mathrm{I}_{\mathrm{xr}} \cdot \mathrm{~d}_{\mathrm{r}}}{\mathrm{~S}_{\mathrm{yr}}}\left[-.5+\sqrt{1.25+.152 \cdot \frac{\mathrm{~J}_{\mathrm{r}}}{\mathrm{I}_{\mathrm{xr}}} \cdot\left(\frac{\mathrm{~L}_{\mathrm{br}}}{\mathrm{~d}_{\mathrm{r}}}\right)^{2}}\right.}\right] \\
& \mathrm{T} \mathrm{C}_{\mathrm{r}}=1 \quad \mathrm{Sc}_{\mathrm{r}}=1 \\
& \mathrm{SRO}_{\mathrm{RO}}:=\frac{\mathrm{L}_{\mathrm{br}}}{\sqrt{\mathrm{r}_{\mathrm{yr}}}} \\
& \mathrm{~S}_{\mathrm{RC} 1}:=\frac{2 \cdot \mathrm{~L}_{\mathrm{br}} \cdot \mathrm{~S}_{\mathrm{yr}}}{\sqrt{I_{\mathrm{xr}} \cdot \mathrm{~J}_{r}}}
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{fbry}:=\frac{\mathrm{M}_{\mathrm{yrmax}} \cdot \mathrm{l}_{\mathrm{yr}}}{S_{y r} \cdot l_{\mathrm{ytotr}}} & \mathrm{fbry}=7963 \mathrm{psi} \\
\mathrm{fbrx}:=\frac{\mathrm{M}_{\mathrm{xrmax}} \cdot I_{\mathrm{xr}}}{S_{\mathrm{xr}} \cdot \cdot_{\mathrm{xtotr}}} & \mathrm{fbrx}=11552 \mathrm{psi}
\end{array}
$$

$F_{b r x}:=12500 \cdot T_{r}+19500 T 6_{r}$

Case 2-Point Load:

$$
\begin{array}{ll}
\Delta_{\mathrm{yr} 2}:=\frac{\mathrm{P} \cdot \mathrm{~L}^{3}}{\mathrm{~K}_{3} \cdot \mathrm{E}_{\mathrm{r}} \cdot \mathrm{l}_{\mathrm{ytotr}}} & \Delta_{\mathrm{yr} 2}=0.34 \\
\Delta_{\mathrm{xr} 2}:=\frac{\mathrm{P} \cdot \mathrm{~L}^{3}}{\mathrm{~K}_{3} \cdot \mathrm{E}_{\mathrm{r}} \cdot \mathrm{I}_{\mathrm{xtotr}}} & \Delta_{\mathrm{xr} 2}=0.572 \quad \text { in }
\end{array}
$$

$$
\text { Fbry }=19500 \text { psi }
$$

$M_{\text {prmax }}:=\frac{P \cdot L}{\mathrm{~K}_{2}}$

$$
M_{\text {prmax }}=3850 \quad \text { in } \cdot \mathrm{lb}
$$

fbry2 $:=\frac{\mathrm{M}_{\mathrm{prmax}} \cdot \mathrm{I}_{\mathrm{yr}}}{\mathrm{S}_{\mathrm{yr}} \cdot \mathrm{I}_{\mathrm{ytotr}}}$
fbry2 $=9928 \quad$ psi
$\mathrm{fbrx2}:=\frac{\mathrm{M}_{\text {prmax }} \cdot \mathrm{l}_{\mathrm{xr}}}{S_{\mathrm{xr}} \cdot I_{\mathrm{xtotr}}} \quad \quad \mathrm{fbrx2}=14403 \quad \mathrm{psi}$
$F_{b r x}=19500 \mathrm{psi}$

Calculation Results:

RICE	105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048 www.rice-inc.com	Project Description: Star System - IBC 2021	Job No:		R23-08-261	
			Engineer	JDB	Sheet No:	A1 A
ENGINEERING			Date:	1/10/2024	Rev:	
Template: REI-MC-5719			Chk By:		Date:	

$\mathrm{b}:=2$	in	
$\mathrm{t}:=0.125$	in	
$\mathrm{d}:=2$	in	
$\mathrm{L}:=48$	in	Post Tri butaryWidth
$\mathrm{h}:=42$	in	Railing Height
$\mathrm{L}_{\mathrm{b}}:=3$	in	Bottom Rail Height
$\mathrm{L}_{\mathrm{W}}:=2$	in	Max Bottom Rail Weld Length

Railing Loading:

$W_{\mathrm{h}}:=50$	plf	Horizontal Uniform Load
$\mathrm{W}_{\mathrm{V}}:=0$	plf	Simultaneous Verícal Load
$\mathrm{P}:=200$	lb	Concentrated Load

$\frac{\text { Use } \mathbf{2 " ~}^{\prime \prime} \times \mathbf{2 " ~}^{\prime \prime} \times 1 / \mathbf{1 "}^{\prime \prime} \text { Wall Tube }}{(6061-T 6 \text { or better) }}$
with reinforcement as shown below

Post Analysis	Detail Ref.	Sheet No: A2

Post Material:
$\mathrm{b}_{1}:=\mathrm{b}-2 \mathrm{t}=1.75$ in

Post Properties:

$$
\begin{aligned}
& \mathrm{A}:=\mathrm{b} \cdot \mathrm{~d}-\mathrm{b}_{1} \cdot \mathrm{~d}_{1}=0.938 \text { in }^{2} \\
& \mathrm{I}_{\mathrm{x}}:=0.0833\left(\mathrm{~b} \cdot \mathrm{~d}^{3}-\mathrm{b}_{1} \cdot \mathrm{~d}_{1}{ }^{3}\right)=0.552 \text { in }^{3} \\
& \mathrm{~S}_{\mathrm{x}}:=\left(\mathrm{b} \cdot \mathrm{~d}^{3}-\mathrm{b}_{1} \cdot \mathrm{~d}_{1}{ }^{3}\right) \cdot(6 \mathrm{~d})^{-1}=0.55 \text { in }^{3} \\
& \mathrm{Z}_{\mathrm{x}}:=0.25 \cdot \mathrm{~b} \cdot \mathrm{~d}^{2}-0.25 \mathrm{~b}_{1} \cdot \mathrm{~d}_{1}^{2}=0.66 \mathrm{in}^{3} \\
& \mathrm{~J}:=2 \cdot \mathrm{t} \cdot \mathrm{~b}^{2} \cdot \mathrm{~d}^{2} \cdot(\mathrm{~b}+\mathrm{d})^{-1}=1.0000
\end{aligned}
$$

Post Construction:

Welded within 1 " of Maximum Moment
Bottom rail welded to post

Calculations:

$E_{p}:=|$| 10000000 | if $M 1<7=10000000$ |
| :--- | :--- |
| 29000000 | otherwise |

$\mathrm{w}_{\mathrm{h}}:=\frac{\mathrm{W}_{\mathrm{h}}}{12}=4.17 \mathrm{pli} \quad \mathrm{w}_{\mathrm{V}}:=\frac{\mathrm{W}_{\mathrm{V}}}{12}=0 \quad$ pli

2" Min. Length - I Stub Properties - 6061-T6

$I_{\text {st }}:=0.347$	in 4	$L_{\text {st }}:=2$	in
$S_{\text {st }}:=0.401$	in 3	$E_{\text {st }}:=10000000$	psi
F bst $=9091$	psi		

Note: Separate Dissimilar Metals

$$
\begin{aligned}
& \Delta_{\mathrm{xp} 1}:=\frac{\mathrm{wh} \cdot \mathrm{~L} \cdot\left(\mathrm{~h}-\mathrm{L}_{\mathrm{st}}\right)^{3}}{3 \cdot \mathrm{E}_{\mathrm{p}} \cdot \mathrm{I}_{\mathrm{x}}}=0.77 \quad \text { in } \\
& \Delta_{\mathrm{xp} 2}:=\frac{\mathrm{P} \cdot 0.85 \cdot\left(\mathrm{~h}-\mathrm{L}_{\mathrm{st}}\right)^{3}}{3 \cdot \mathrm{E}_{\mathrm{p}} \cdot \mathrm{I}_{\mathrm{x}}}=0.66 \quad \text { in } \\
& \Delta_{\text {tot }}:=\frac{\mathrm{wh} \cdot \mathrm{~L} \cdot\left(\mathrm{~h}-\mathrm{L}_{\mathrm{st}}\right)^{3}}{3 \cdot \mathrm{E}_{\mathrm{p}} \cdot \mathrm{I}_{\mathrm{x}}}+\frac{\mathrm{wh} \cdot \mathrm{~L} \cdot\left[\mathrm{~h}-\left(\mathrm{h}-\mathrm{L}_{\mathrm{st}}\right)\right]^{3}}{3 \cdot\left[\left(\mathrm{E}_{\mathrm{p}} \cdot \mathrm{I}_{\mathrm{x}}\right)+\left(\mathrm{E}_{\mathrm{st}} \mathrm{I}_{\mathrm{st}}\right)\right]}=0.77 \quad \text { in }
\end{aligned}
$$

$$
\Delta_{\text {allp }}:=\frac{2 \cdot \mathrm{~h}}{60}=1.4 \quad \text { in } \quad \operatorname{Per~IBC}
$$

Allowable Stress Coefficients:					Material Properties:
$\mathrm{X} 1=10.2$	X5 $=10.2$	X9 = 9.1	$\mathrm{X} 13=58$	$\mathrm{X} 17=16$	$F_{\text {ty }}=15000$
X2 $=0.08$	X6 $=0.08$	$\mathrm{X} 10=28.2$	X14 $=346$	$\mathrm{X} 18=0.07$	$F_{\text {cy }}=15000$
X3 $=6943$	X7 $=6943$	$\mathrm{X} 11=12$	X15 = 11.8	X19 = 123	$\mathrm{F}_{\text {tu }}=24000$
$X 4=23599$	X8 = 23599	$\mathrm{X} 12=0.11$	X16 $=64.2$	$X 20=982$	$\mathrm{F}_{\text {tyw }}=15000$
		$:=\frac{2 \cdot \mathrm{~L}_{\mathrm{b}} \cdot \mathrm{~S}}{\mathrm{C}_{\mathrm{b}} \sqrt{\mathrm{I}_{\mathrm{y}}}}$	$=2.67$	$C_{b}=1.67$	$\begin{aligned} & F_{\text {cyw }}=15000 \\ & F_{\text {tuw }}=24000 \\ & F_{\text {ySTL }}=0 \end{aligned}$
[F.3.1]	$\mathrm{bAL}:=\left\lvert\, \begin{aligned} & {[\mathrm{X} 1} \\ & \frac{\mathrm{X} 4}{\mathrm{~S}_{\mathrm{r}}} \end{aligned}\right.$	$\left.-X 2 \sqrt{S_{r}}\right)$ therwise	$0] \text { if } \mathrm{S}_{\mathrm{r}}$	$X 3=10066$	psi

[F.8.1.1]
[F.8.1.2]
[F.8.2.1]
$F_{b A L 2}:=\min \left(\min \left(\frac{F_{t y}}{1.65}, \frac{F_{\text {tu }}}{1.95}\right), \min \left(\frac{1.30 \cdot F_{\text {ty }}}{1.65}, \frac{1.42 \cdot F_{\text {tu }}}{1.95}\right)\right)=9091 \quad \mathrm{psi}$
[F.8.2.1] $\quad \mathrm{S}_{\mathrm{rf}}:=\mathrm{b}_{1} \cdot \mathrm{t}^{-1}=14$
[B.5.4.2] $\quad \mathrm{F}_{\mathrm{bAL} 3}:=\mid \mathrm{X} 9.1000$ if $\mathrm{S}_{\mathrm{rf}}<\mathrm{X} 10 \quad=9100 \quad \mathrm{psi}$ otherwise

$$
\left\lvert\, \begin{aligned}
& \left(\mathrm{X} 11-\mathrm{X} 12 \cdot \mathrm{~S}_{\mathrm{rf}}\right) \cdot 1000 \text { if } \mathrm{S}_{\mathrm{rf}} \leq \mathrm{X} 13 \\
& \frac{\mathrm{X} 14}{\mathrm{~S}_{\mathrm{rf}}} \cdot 1000 \text { otherwise }
\end{aligned}\right.
$$

[F.8.2.2]

$$
\mathrm{S}_{\mathrm{rw}}:=\mathrm{d}_{1} \cdot \mathrm{t}^{-1}=14
$$

[B.5.5.1] $F_{b A L 4 ~}:=\mid \mathrm{X} 15 \cdot 1000$ if $\mathrm{S}_{\mathrm{rw}}<\mathrm{X} 16 \quad=11800 \mathrm{psi}$ otherwise
$\mid\left(X 17-X 18 \cdot S_{r w}\right) \cdot 1000$ if $S_{r f} \leq X 19$ $\frac{X 20}{S_{r w}} \cdot 1000$ otherwise
FbSTL $:=\frac{\mathrm{F}_{y S T L}}{1.67}=0 \quad \mathrm{psi}$
$\mathrm{F}_{\mathrm{b}}:=\max \left(\min \left(\mathrm{F}_{\mathrm{bAL}}, \mathrm{F}_{\mathrm{bAL}}, \mathrm{F}_{\mathrm{bAL}}, \mathrm{F}_{\mathrm{bAL}} 4\right), \mathrm{F}_{\mathrm{bSTL}}\right)=9091 \quad \mathrm{psi}$

RICE	105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048 www.rice-inc.com	Project Description: Star System - IBC 2021	Job No: R23-08-261			
			Engineer	JDB	Sheet No:	A2
ENGINEERING			Date:	1/10/2024	Rev:	
Template: REI-MC-5714A			Chk By:		Date:	

Case 1 - Uniform Load:

Post Analysis	Detail Ref.	Sheet No: A2 A

$M_{x p m a x}:=\left(w_{h} \cdot L \cdot h\right)+w_{V} \cdot L \cdot \Delta_{\text {tot }}$
$M_{x p m a x 2}:=w_{h} \cdot L \cdot\left(h-L_{s t}\right)+w_{v} \cdot L \cdot \Delta_{x p} 1$

$M_{x p m a x}=8400$	$\mathrm{lb} \cdot \mathrm{in}$
$M_{x p m a x}=8000$	$\mathrm{lb} \cdot \mathrm{in}$

Case 2 - Point Load:

$$
\begin{aligned}
& M_{\text {xpmax3 }}:=(P \cdot h \cdot 0.85) \\
& M_{\text {xpmax } 4}:=P \cdot\left(h-L_{s t}\right) \cdot 0.85
\end{aligned}
$$

$M_{x p m a x}=7140$	$\mathrm{lb} \cdot \mathrm{in}$
$M_{x p m a x} 4=6800$	$\mathrm{lb} \cdot \mathrm{in}$

Max Post Stress Above Reinforcement:

$f_{b p x}:=|$| $\frac{\max \left(M_{x p m a x}, M_{x p m a x}\right)}{}$ | if $M 1 \geq 7$ |
| :--- | :--- |
| $\frac{\max \left(M_{x p m a x}, M_{x p m a x 4}\right)}{S_{x}}$ | otherwise |

$\mathrm{fbpx}=14499$	psi
$\mathrm{Fpx}=19500$	psi

Max Post/Stub Combined Stress @ Bottom Rail Weld:

(Run Reinforcement Past Bottom Rai)

$\mathrm{hbr}_{\mathrm{br}}:=\mathrm{h}-\mathrm{L}_{\mathrm{b}}$	$\mathrm{hbr}_{\mathrm{br}}=39$	in
$M_{b 1}:=w_{h} \cdot L \cdot h_{b r}+w_{\mathrm{V}} \cdot L \cdot \frac{w_{h} \cdot L \cdot h_{b r}{ }^{3}}{3 \cdot E_{p} \cdot I_{\mathrm{x}}}$	$\mathrm{M}_{\mathrm{b} 1}=7800$	in.lb
$\mathrm{Mb}^{2}:=\mathrm{P} \cdot 0.85 \cdot \mathrm{hbr}^{\text {b }}$	$M_{\text {b2 }}=6630$	in.lb
$\mathrm{fbbr}:=\max \left(M_{b 1}, M_{b 2}\right) \cdot \frac{I_{x} \cdot E_{p}}{\left(I_{x} \cdot E_{p}+I_{s t} \cdot E_{s t}\right) \cdot S_{x}}$	$\mathrm{fbbr}=8677$	psi
$F_{b w}:=\min \left(\frac{F_{\text {tyw }}}{1.65}, \frac{F_{\text {tuw }}}{1.95}\right)$	$F_{\text {bw }}=9091$	psi
$A_{W}:=\left(L_{W}+2\right) \cdot(2) \cdot t \cdot C 2$	$A_{W}=1.000$	in ${ }^{2}$
$F_{b b r}:=\max \left[F_{b S T L}, \max \left[F_{b p x}-\frac{A_{W}}{A} \cdot\left(F_{b p x}-F_{b w}\right), F_{b w}\right]\right]$	Fbbr $=9091$	psi

Max Post/Stub Combined Stress:

$f_{b p x 2}:= \begin{cases}\max \left(M_{x p m a x}, M_{x p m a x} 3\right) \cdot \frac{I_{x} \cdot E_{p}}{\left(I_{x} \cdot E_{p}+I_{s t} \cdot E_{s t}\right) \cdot Z_{x}} & \text { if } M 1 \geq 7 \\ \max \left(M_{x p m a x}, M_{x p m a x} 3\right) \cdot \frac{I_{x} \cdot E_{p}}{\left(I_{x} \cdot E_{p}+I_{s t} \cdot E_{s t}\right) \cdot S_{x}} & \text { otherwise }\end{cases}$

$\mathrm{fbpx2}=9345$	psi
$\mathrm{F}_{\mathrm{b}}=9091$	psi

3\% Over
OK Per Testing See Sheet A2.1

Max Stub Stress:

$f_{b s t}:=\max \left(M_{x p m a x}, M_{x p m a x} 3\right) \cdot \frac{I_{s t} \cdot E_{s t}}{\left(I_{x} \cdot E_{p}+I_{s t} \cdot E_{s t}\right) \cdot S_{s t}}$

$\mathrm{fbst}=8090$	psi
$\mathrm{Fbst}=9091$	psi

Calculation Results:

$$
\begin{aligned}
& \operatorname{lnt}_{\mathrm{p} 1}:=\max \left(\frac{\mathrm{fbpx}}{F_{\mathrm{bpx}}}, \frac{\mathrm{f}_{\mathrm{bpx}} 2}{\mathrm{~F}_{\mathrm{b}} \cdot 1.03}, \frac{\mathrm{f}_{\mathrm{bst}}}{F_{\mathrm{bst}}}, \frac{\mathrm{f}_{\mathrm{bbr}}}{\mathrm{~F}_{\mathrm{bbr}}}\right) \quad \ln \mathrm{t}_{\mathrm{p} 1}=1 \\
& \text { POSTS }:=\left\{\begin{array}{l}
\text { "OK" if } \operatorname{lnt}_{\mathrm{p} 1} \leq 1 \wedge \frac{\max \left(\Delta_{\mathrm{xp} 1}, \Delta_{\mathrm{xp} 2}, \Delta_{\mathrm{tot}}\right)}{\Delta_{\text {allp }}} \leq 1 \\
\text { "FAIL" otherwise }
\end{array}\right.
\end{aligned}
$$

Reactions for Anchorage (ASD):
$R:=\max \left(P \cdot 0.85, w_{h} \cdot L\right)=200 \quad \mathrm{lb}$
$\mathrm{M}:=\max \left(M_{\text {xpmax }}, M_{\text {xpmax }}\right)=8400 \quad$ in $\cdot \mathrm{lb}$
$M_{p}=5156 \quad$ in $\cdot \mathrm{lb}$
$M_{\text {st }}=3244 \quad$ in $\cdot \mathrm{lb}$

RICE	105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048 www.rice-inc.com	Project Description: Star System - IBC 2021	Job No: R23-08-261			
			Engineer	JDB	Sheet No:	A2 A
			Date:	1/10/2024	Rev:	
Template: REI-MC-5714A			Chk By:		Date:	

Inputs: \qquad
ADM Tes ting

Post Analysis	Detail Ref.	Sheet No: A2.1

Method 2:

$\beta_{\mathrm{O}}:=3.5$	target reliablility index
	strength of ith test
$\mathrm{R}_{\mathrm{t}}:=\mathrm{a}$	
$\alpha:=0.2$	
$\mathrm{e}:=2.72$	
$M_{m}:=1.00$	mean value of material factor
$\mathrm{F}_{\mathrm{m}}:=1.0$	mean value of fabrication factor
$\mathrm{V}_{\mathrm{M}}:=0.06$	coefficient of variation of material factor
$V_{F}:=0.15$	coefficient of variation of fabrication factor
$\mathrm{n}:=\operatorname{rows}(\mathrm{a})=15$	number of tests

lb
$\alpha:=0.2$
$e:=2.72$
$\mathrm{Mm}_{\mathrm{m}}:=1.00 \quad$ mean value of material factor
$\mathrm{F}_{\mathrm{m}}:=1.0 \quad$ mean value of fabrication factor
$\mathrm{V}_{\mathrm{M}}:=0.06 \quad$ coefficient of variation of material factor
$V_{F}:=0.15$
number of tests

coefficient of variation of the ratio of the observed failure loads divided by the average value of all observed failure loads
$V_{Q}:=0.21 \quad$ coefficient of variation of the loads
$\Omega:=\max \left[\left[\frac{1.05 \alpha+1}{M_{m} \cdot F_{m} \cdot(\alpha+1)}\right] \cdot e^{\beta_{0} \cdot \sqrt{V_{M}^{2}+V_{F}^{2}+C_{n} \cdot V_{P}^{2}+V_{Q}}}, 1.95\right]=2.65$

Safety Factor

Allowable2 := $\frac{\mathrm{R}_{\mathrm{tm}}}{\Omega}=202$	lb
Mall2 := Allowable2•42 $=8467$	in.lb

Use 2" x 2" x 1/8" Wall Post (6061-T6)
with 2" TallAluminum Reinforcement (6061-T6) (Loaded the Strong Way)
Test Report By Others - See Appendix A

RICE	105 School Creek Trail uxemburg, WI 54217 Phone: (920) 617-1042 Fax: (920) 617-1100 www.rice-inc.com	Project Description: Star System - IBC 2018	Job No: \quad R23-08-261			
			Engineer:	JDB	Sheet No:	A2.1
ENGINEERING			Date:	1/10/2024	Rev:	
Template: REI-MC-1090			Chk By:		Date:	

Picket Infill	Detail Ref.	Sheet No: A3

Picket Dimensions:

$\mathrm{b}:=0.625 \quad$ in \quad (Picket Size)
6063-T5
$\mathrm{d}:=\mathrm{b}$
6063-T6
$\mathrm{t}:=0.05 \quad$ in (Wall thickness) $\quad \square \quad$ 6005-T5 or
$\mathrm{L}:=37.5$ in (PicketLength)
$L_{r}:=75 \quad$ in \quad (Rail Length) 6005A-T61

Load := $50 \quad$ psfover $1 \mathrm{ft}^{2}$
Trib :=4.5 in (PicketSpacing-o.c.)
all calculations below this line are automatic

Check Pickets:

$B:=12$ in
$A:=\frac{L-B}{2} \quad C:=A$
$\mathrm{A}=12.75$ in
$C=12.75$ in
$\mathrm{w}:=\frac{\text { Load } \cdot \text { Trib }}{144} \quad \mathrm{w}=1.56 \quad \mathrm{pli}$
$\Delta_{\text {act }}:=\frac{(\mathrm{w} \cdot \mathrm{B}) \cdot \mathrm{L}^{3}}{48 \cdot \mathrm{E} \cdot \mathrm{I}_{\mathrm{X}}} \quad \Delta_{\text {act }}=0.319$ in
$\Delta_{\text {all }}:=\frac{\mathrm{L}}{60} \quad \Delta_{\text {all }}=0.625$ in
$\mathrm{R} 1:=\frac{\mathrm{w} \cdot \mathrm{B}}{2 \cdot \mathrm{~L}} \cdot(2 \mathrm{C}+\mathrm{B}) \quad \mathrm{R} 1=9.4 \quad \mathrm{lb}$
$M:=R 1 \cdot\left(A+\frac{R 1}{2 w}\right) \quad M=147.7 \quad \mathrm{lb} \cdot$ in
$S_{r}:=\frac{2 \cdot L S_{X}}{\sqrt{J \cdot I_{X}}} \quad S_{r}=196.7$
$f_{b x}:=\frac{M}{S_{x}}$

$$
\begin{array}{lll}
d_{1}:=d-2 t \quad b_{1}:=b-2 t & E:=10.1 \cdot 10^{6} & \text { psi } \\
x_{x}:=\frac{\left(b \cdot d^{3}\right)-\left(b_{1} \cdot d_{1}{ }^{3}\right)}{12} & I_{x}=0.01 & \text { in }^{4} \\
S_{x}:=\frac{\left(b \cdot d^{3}\right)-\left(b_{1} \cdot d_{1}{ }^{3}\right)}{6 d} & S_{x}=0.02 & \text { in }^{3} \\
J:=\frac{4 \cdot(b-t)^{4} \cdot t}{4 \cdot(b-t)} & J=0.01 & \text { in }^{4}
\end{array}
$$

Check Intermediate or Bottom Rails:
Input: $\quad \mathrm{I}_{\mathrm{x} 1}:=0.04 \quad \mathrm{in}^{4}$

$$
I_{x 2}:=0.03 \quad \text { in }^{4} \quad \text { Sy2 }:=0.04 \quad \text { in }^{3}
$$

$\mathrm{w}_{1}:=\frac{\text { Load }}{12} \quad \mathrm{w}_{1}=4.17 \frac{\mathrm{lb}}{\mathrm{in}}$
$b_{10}:=12=12$ in
$a:=\frac{L_{r}-b_{10}}{(2)}=31.5 \quad$ in
$\mathrm{c}:=\mathrm{a}=31.5$ in
$M_{2}:=\frac{w_{1} \cdot b_{10}}{8 \cdot L_{r}{ }^{2}} \cdot\left(2 \cdot c+b_{10}\right)\left[4 \cdot a \cdot L_{r}+b_{10} \cdot\left(2 c+b_{10}\right)\right]$
$\mathrm{f}_{\mathrm{b} 2}:=\frac{\mathrm{M}_{2} \cdot \mathrm{I}_{\mathrm{x} 1}}{\mathrm{~S}_{\mathrm{y} 2} \cdot\left(\mathrm{I}_{\mathrm{x} 1}+\mathrm{I}_{\mathrm{x} 2}\right)} \quad \mathrm{f}_{\mathrm{b} 2}=12321 \quad \mathrm{psi}$
$\Delta_{r}:=\frac{\text { Load } \cdot L_{r}^{3}}{48 \cdot E \cdot\left(I_{x} 1+I_{x}\right)}=0.62$ in $\quad \Delta_{r a l l}:=\frac{L_{r}}{120}=0.63$ in
RAIL: $=\left\{\begin{array}{l}\text { "OK" } \text { if } \frac{\mathrm{f}_{\mathrm{b} 2}}{19500} \leq 1 \wedge \frac{\Delta_{\mathrm{r}}}{\Delta_{\text {rall }}} \leq 1 \\ \text { "FAIL" } \quad \text { otherwise }\end{array}\right.$
RAIL = "OK"

Use Bottom Rail, As Shown

 (6005-T5 or 6005A-T61)| RICE | 105 School Creek Trail Luxemburg, WI 54217
 Phone: (920) 617-1042
 Fax: (920) 617-1100 www.rice-inc.com | Project Description:
 Star System - IBC 2021 | Job No: R23-08-261 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Engineer: | JDB | Sheet No: | A3 |
| EERING | | | Date: | 1/10/2024 | Rev: | |
| Template: REI-MC-5740 | | | Chk By: | | Date: | |

Picket Infill	Detail Ref.	Sheet No: A3.1

Picket Dimensions:

$\mathrm{b}:=0.625 \quad$ in \quad (PicketSize)
6063-T5
$\mathrm{d}:=\mathrm{b}$
6063-T6
$\mathrm{t}:=0.05 \quad$ in (Wall thickness) $\quad \square \quad$ 6005-T5 or
$\mathrm{L}:=37.5$ in (PicketLength)
$L_{r}:=75 \quad$ in \quad (Rail Length) 6005A-T61

Load := $50 \quad$ psfover $1 \mathrm{ft}^{2}$
Trib := $3.94 \quad$ in \quad (PicketSpacing-o.c.)
all calculations below this line are automatic

Check Pickets:

$B:=12$ in
$A:=\frac{L-B}{2} \quad C:=A$
$A=12.75$ in
$C=12.75$ in
$\mathrm{w}:=\frac{\text { Load } \cdot \text { Trib }}{144} \quad \mathrm{w}=1.37 \quad \mathrm{pli}$
$\Delta_{\text {act }}:=\frac{(\mathrm{w} \cdot \mathrm{B}) \cdot \mathrm{L}^{3}}{48 \cdot \mathrm{E} \cdot \mathrm{I}_{\mathrm{X}}} \quad \Delta_{\text {act }}=0.28 \quad$ in
$\Delta_{\text {all }}:=\frac{\mathrm{L}}{60} \quad \Delta_{\text {all }}=0.625$ in
$\mathrm{R} 1:=\frac{\mathrm{w} \cdot \mathrm{B}}{2 \cdot \mathrm{~L}} \cdot(2 \mathrm{C}+\mathrm{B}) \quad \mathrm{R} 1=8.2 \quad \mathrm{lb}$
$M:=R 1 \cdot\left(A+\frac{R 1}{2 w}\right) \quad M=129.3 \quad \mathrm{lb} \cdot$ in
$S_{r}:=\frac{2 \cdot L S_{X}}{\sqrt{J \cdot I_{X}}} \quad S_{r}=196.7$
$f_{b x}:=\frac{M}{S_{x}}$

Check Intermediate or Bottom Rails:

$$
\text { RAIL : }=\left\lvert\, \begin{aligned}
& \text { "OK" if } \frac{\mathrm{f}_{\mathrm{b} 2}}{19500} \leq 1 \wedge \frac{\Delta_{\mathrm{r}}}{\Delta_{\text {rall }}} \leq 1 \\
& \text { "FAIL" } \quad \text { otherwise }
\end{aligned}\right.
$$

RAIL = "OK"

$$
\frac{\text { Use Bottom Rail, As Shown }}{(6005-T 5 \text { or } 6005 A-T 61)}
$$

$$
\begin{aligned}
& \text { Input: } \quad I_{x 1}:=0.04 \quad \text { in }^{4} \\
& \text { Ix2 }:=0.03 \text { in }{ }^{4} \quad \text { Sy2 }:=0.04 \quad \text { in }^{3} \\
& \mathrm{w}_{1}:=\frac{\text { Load }}{12} \quad \mathrm{w}_{1}=4.17 \quad \frac{\mathrm{lb}}{\mathrm{in}} \\
& b_{10}:=12=12 \text { in } \\
& a:=\frac{L_{r}-b_{10}}{(2)}=31.5 \quad \text { in } \\
& c:=a=31.5 \quad \text { in } \\
& M_{2}:=\frac{w_{1} \cdot b_{10}}{8 \cdot L_{r}{ }^{2}} \cdot\left(2 \cdot c+b_{10}\right)\left[4 \cdot a \cdot L_{r}+b_{10} \cdot\left(2 c+b_{10}\right)\right] \\
& \mathrm{f}_{\mathrm{b} 2}:=\frac{\mathrm{M}_{2} \cdot \mathrm{I}_{\mathrm{x} 1}}{\mathrm{~S}_{\mathrm{y} 2} \cdot\left(\mathrm{I}_{\mathrm{x} 1}+\mathrm{I}_{\mathrm{x} 2}\right)} \quad \mathrm{f}_{\mathrm{b} 2}=12321 \quad \mathrm{psi} \\
& \Delta_{r}:=\frac{\text { Load } \cdot L_{r}^{3}}{48 \cdot E \cdot\left(I_{\times 1}+I_{\times 2}\right)}=0.62 \text { in } \quad \Delta_{r a l l}:=\frac{L_{r}}{120}=0.63 \text { in }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{d}_{1}:=\mathrm{d}-2 \mathrm{t} \quad \mathrm{~b}_{1}:=\mathrm{b}-2 \mathrm{t} \quad \mathrm{E}:=10.1 \cdot 10^{6} \mathrm{psi} \\
& \mathrm{I}_{\mathrm{x}}:=\frac{\left(\mathrm{b} \cdot \mathrm{~d}^{3}\right)-\left(\mathrm{b}_{1} \cdot \mathrm{~d}_{1}{ }^{3}\right)}{12} \quad \mathrm{I}_{\mathrm{x}}=0.01 \quad \text { in }^{4} \\
& S_{x}:=\frac{\left(b \cdot d^{3}\right)-\left(b_{1} \cdot d_{1}^{3}\right)}{6 d} \quad S_{x}=0.02 \quad \text { in }^{3} \\
& J:=\frac{4 \cdot(b-t)^{4} \cdot t}{4 \cdot(b-t)} \quad J=0.01 \quad \text { in }{ }^{4}
\end{aligned}
$$

$\underbrace{\text { RICE }}_{\text {ENGINEERING }}$	105 School Creek Trail Luxemburg, WI 54217 Phone: (920) 617-1042 Fax: (920) 617-1100 www.rice-inc.com	Project Description: Star System - IBC 2021	Job No: R23-08-261			
			Engineer:	JDB	Sheet No:	A3.1
			Date:	1/10/2024	Rev:	
Template: REI-MC-5740			Chk By:		Date:	

IBC Anchorage to Concrete	Detail Ref.	Sheet No: A4

Chk Anchor Bolts:

$\mathrm{V}_{\mathrm{b}}:=R_{\max } \cdot 1.6$	$\mathrm{~V}_{\mathrm{b}}=323$	lb
$\mathrm{M}_{\mathrm{b}}:=\mathrm{M}_{\max } \cdot 1.6$	$M_{b}=13547$	in $\cdot \mathrm{lb}$

SEE CONCRETEANCHOR MANUFACTURER DATA

Use (4) 3/8" Dia. SS Hilti HIT-Z-R Rods
with HIT-HY 200 Adhesive
300 Series Stainless Steel
Embedment: $2-3 / 4^{\prime \prime}$ Min.
Edge Distance: $3-1 / 4^{\prime \prime}$
2nd Edge Distance: 3-1/4"
Spacing: 3-1/2"
Min. Slab Thickness: $5^{\prime \prime}$
Concrete Strength: $f^{\prime \prime}=4,000$ psi, Normal Wt., Cracked
Install per Manufacturer's instructions

OR

Use (4) 3/8" Dia. SS Hilti Kwik Bolt TZ2 Anchors 300 Series Stainless Steel

Embedment: 3" Min.
Edge Distance: 3-1/4"
2nd Edge Distance: 3-1/4"
Spacing: 3-1/2"
Min. Slab Thickness: 5"
Concrete Strength: fc $=4,000$ psi, Normal Wt., Cracked
Install per Manufacturer's instructions

RICE	105 School Creek Trail Luxemburg, WI 54217 Phone: (920) 617-1042 Fax: (920) 617-1100 www.rice-inc.com	Project Description: Star System - IBC 2021	Job No: R23-08-261			
			Engineer:	JDB	Sheet No:	A4
ENGINEERING			Date:	1/10/2024	Rev:	
Template: REI-MC-5780			Chk By:		Date:	

IBC Anchorage to Wood	Detail Ref.	Sheet No: A5

$R_{\max }:=202$	lb	$\mathrm{b}:=2$	in (postwidth)
$\mathrm{M}_{\max }:=8467$	in $\cdot \mathrm{lb}$	$\mathrm{d}:=2$	in (postdepth)

Chk Post Weld to Base Plate:

Use 3/16" fillet weld all around 5356 filler alloy OK Per Testing

Chk I-Beam Weld to Base Plate:

Use 3/16" Fillet Welds
5356 filler alloy - All Around - Inside of I-Beam
OK Per Testing

Chk Base Plate:

Use 3/8" $\times \mathbf{5}^{\prime \prime} \times \mathbf{5}^{\text {" }}$ Plate
$6061-\mathrm{T6}$ alloy
OK Per Testing

see Sheet A5B for Wet Conditions - Southern Pine

Use (4) 3/8" Dia. SS Lag Screws
300 Series Stainless Steel

Penetration: 4-1/4" Min.
Thread Engagement: 3-3/16" min.
Edge Distance: 1-1/2"
End Distance: 2-5/8"
Spacing: as shown
Assume S.G. $=0.55$ (So. Pine)

> | **Install per NDS Guidelines** |
| :---: |
| Wood Blocking Designed By Others |
| Moisture Content > or $=$ to 19% |

Sheet A5C for Dry Conditions - SPF
Use (4) 3/8" Dia. SS Lag Screws
300 Series Stainless Steel
Penetration: 4-5/16" Min.
Thread Engagement: 3-1/4" min.
Edge Distance: 1-1/2"
End Distance: 2-5/8"
Spacing: as shown
Assume S.G. $=0.42$ (S-P-F)

> | **Install per NDS Guidelines** |
| :---: |
| Wood Blocking Designed By Others |
| Moisture Content < 19% |

RICE	105 School Creek Trail Luxemburg, WI 54217 Phone: (920) 617-1042 Fax: (920) 617-1100 www.rice-inc.com	Project Description: Star System - IBC 2021	Job No: R23-08-261			
			Engineer	JDB	Sheet No:	A5
F			Date:	1/10/2024	Rev:	
Template: REI-MC-5780			Chk By:		Date:	

Lag Screws	Detail Ref.	Sheet No: A5A

Mixed Maple Southern Pine

$p:=3$	penetration, in
$t_{\text {shim }}:=0.75$	thickness of shim, in
$C_{D}:=1.6$	load duration factor, 10.3.2
$C_{M}:=1.0$	wet service factor, 10.3.3
$C_{t}:=1.0$	temperature factor, 10.3.4
$C_{g}:=1.0$	group action factor, 10.3.6
$C_{\Delta}:=1.0$	geometry factor, 11.5.1
$C_{e g}:=1.0$	end grain factor, 11.5.2
$C_{d i}:=1.0$	diaphragm factor, 11.5.3
$\theta:=90$	angle of load to grain, degree

Calculations

$Z_{I m}:=\frac{D_{r} \cdot I_{m} \cdot F_{e m}}{R_{d 1}}=998.45 \quad Z_{l s}:=\frac{D_{r} \cdot l_{s} \cdot F_{e s}}{R_{d 1}}=854.63 \quad Z_{I I}:=\frac{\mathrm{k}_{1} \cdot D_{r} \cdot I_{s} \cdot F_{e s}}{R_{d 2}}=454.32 \quad Z_{I I I m}:=\frac{\mathrm{k}_{2} \cdot D_{r} \cdot I_{m} \cdot F_{e m}}{\left(1+2 R_{e}\right) \cdot R_{d} 3}=518.01$
$Z_{\text {IIIs }}:=\frac{\mathrm{k}_{3} \cdot \mathrm{D}_{\mathrm{r}} \cdot \mathrm{I}_{\mathrm{s}} \cdot \mathrm{F}_{\mathrm{em}}}{\left(2+\mathrm{R}_{\mathrm{e}}\right) \cdot R_{\mathrm{d} 3}}=236.93 \quad \quad Z_{\mathrm{IV}}:=\frac{\mathrm{D}_{\mathrm{r}}{ }^{2}}{R_{\mathrm{d} 3}} \cdot \sqrt{\frac{2 \cdot F_{e m} \cdot F_{y b}}{3 \cdot\left(1+R_{e}\right)}}=225.73$
$Z_{1}:=\min \left(Z_{\text {Im }}, Z_{I s}, Z_{I I}, Z_{I I I m}, Z_{I I I s}, Z_{I V}\right)=225.73 \quad R_{\text {pos }}:=\sqrt{T_{\text {pos }}{ }^{2}+V_{\text {pos }}{ }^{2}}=1176.34 \mathrm{lbf} \quad \quad R_{n e g}:=\sqrt{T_{n e g}}{ }^{2}+V_{n e g}{ }^{2}=1176.34 \mathrm{lbf}$
$W_{1}=351.84 \quad \alpha_{\text {pos }}:=\operatorname{atan}\left(T_{\text {pos }} \cdot V_{\text {pos }}{ }^{-1}\right)=85.07 \cdot \operatorname{deg} \quad \alpha_{\text {neg }}:=\operatorname{atan}\left(T_{n e g} \cdot V_{\text {neg }}-1\right)=85.07 \cdot \operatorname{deg}$

Results

$$
\begin{aligned}
& Z^{\prime}:=Z_{1} \cdot C_{D} \cdot C_{M} \cdot C_{t} \cdot C_{g} \cdot C_{\Delta} \cdot C_{e g} \cdot C_{\mathrm{di}} \cdot \mathrm{lbf}=361.17 \mathrm{lbf} \\
& W^{\prime}:=W_{1} \cdot C_{D} \cdot C_{M} \cdot C_{t} \cdot C_{e g} \cdot P_{t e n} \cdot \mathrm{lbf}=1442.53 \mathrm{lbf}
\end{aligned}
$$

Allowable Shear

Allowable Tension

$$
\begin{array}{ll}
Z_{\alpha \text { pos }}:=\frac{W^{\prime} \cdot Z^{\prime}}{W^{\prime} \cdot\left(\cos \left(\alpha_{\text {pos }}\right)\right)^{2}+Z^{\prime} \cdot\left(\sin \left(\alpha_{\text {pos }}\right)\right)^{2}}=1411.38 \mathrm{lbf} & \text { Intpos }:=\frac{R_{\text {pos }}}{Z_{\alpha p o s}}=0.83 \\
Z_{\alpha \text { neg }}:=\frac{W^{\prime} \cdot Z^{\prime}}{W^{\prime} \cdot\left(\cos \left(\alpha_{\text {neg }}\right)\right)^{2}+Z^{\prime} \cdot\left(\sin \left(\alpha_{\text {neg }}\right)\right)^{2}}=1411.38 \mathrm{lbf} & \text { Intneg }:=\frac{R_{\text {neg }}}{Z_{\alpha n e g}}=0.83
\end{array}
$$

Fastener = "3/8 in Lag Screw SS"
Predrill = "Predrill Holes at 60\%-75\% D"
Penetration = "Verify Blocking Thickness"
Material $=$ "Mixed Maple Southern Pine"
$G=0.55$
Pten $=2.56$

RICE	105 School Creek Trail Luxemburg, WI 54217 Phone: (920) 617-1042 Fax: (920) 617-1100 www.rice-inc.com	Project Description: Star System - IBC 2021	Job No: R23-08-261			
			Engineer	JDB	Sheet No:	A5A
ENGINEERING			Date:	1/10/2024	Rev:	
Template: REI-MC-7001			Chk By:		Date:	

Lag Screws	Detail Ref.	Sheet No: A5B

Mixed Maple Southern Pine	∇

$p:=4.25$	penetration, in
$t_{\text {shim }}:=0.75$	thickness of shim, in
$C_{D}:=1.6$	load duration factor, 10.3.2
$C_{M}:=0.7$	wet service factor, 10.3.3
$C_{t}:=1.0$	temperature factor, 10.3.4
$C_{g}:=1.0$	group action factor, 10.3.6
$C_{\Delta}:=1.0$	geometry factor, 11.5.1
$C_{e g}:=1.0$	end grain factor, 11.5.2
$C_{d i}:=1.0$	diaphragm factor, 11.5.3
$\theta:=90$	angle of load to grain, degree

Calculations

$Z_{I m}:=\frac{D_{r} \cdot I_{m} \cdot F_{e m}}{R_{d 1}}=998.45 \quad Z_{l s}:=\frac{D_{r} \cdot I_{s} \cdot F_{e s}}{R_{d 1}}=854.63 \quad Z_{I I}:=\frac{\mathrm{k}_{1} \cdot D_{r} \cdot I_{s} \cdot F_{e s}}{R_{d 2}}=454.32 \quad Z_{I I I m}:=\frac{\mathrm{k}_{2} \cdot D_{r} \cdot I_{m} \cdot F_{e m}}{\left(1+2 R_{e}\right) \cdot R_{d} 3}=518.01$
$Z_{\text {IIIs }}:=\frac{\mathrm{k}_{3} \cdot \mathrm{D}_{\mathrm{r}} \cdot \mathrm{I}_{\mathrm{s}} \cdot \mathrm{F}_{\mathrm{em}}}{\left(2+\mathrm{R}_{\mathrm{e}}\right) \cdot R_{\mathrm{d} 3}}=236.93 \quad \quad Z_{\mathrm{IV}}:=\frac{\mathrm{D}_{\mathrm{r}}{ }^{2}}{R_{\mathrm{d} 3}} \cdot \sqrt{\frac{2 \cdot F_{e m} \cdot F_{y b}}{3 \cdot\left(1+R_{e}\right)}}=225.73$
$Z_{1}:=\min \left(Z_{\text {Im }}, Z_{I s}, Z_{I I}, Z_{I I I m}, Z_{I I I s}, Z_{I V}\right)=225.73 \quad R_{\text {pos }}:=\sqrt{T_{\text {pos }}{ }^{2}+V_{\text {pos }}{ }^{2}}=1176.34 \mathrm{lbf} \quad \quad R_{n e g}:=\sqrt{T_{n e g}}{ }^{2}+V_{n e g}{ }^{2}=1176.34 \mathrm{lbf}$
$W_{1}=351.84 \quad \alpha_{\text {pos }}:=\operatorname{atan}\left(T_{\text {pos }} \cdot V_{\text {pos }}{ }^{-1}\right)=85.07 \cdot \operatorname{deg} \quad \alpha_{\text {neg }}:=\operatorname{atan}\left(T_{\text {neg }} \cdot V_{\text {neg }}-1\right)=85.07 \cdot \operatorname{deg}$

Results

$\mathrm{Z}^{\prime}:=\mathrm{Z}_{1} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{C}_{\mathrm{M}} \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{C}_{\mathrm{g}} \cdot \mathrm{C}_{\Delta} \cdot \mathrm{C}_{\mathrm{eg}} \cdot \mathrm{C}_{\mathrm{di}} \cdot \mathrm{lbf}=252.82 \mathrm{lbf}$
$\mathrm{W}^{\prime}:=\mathrm{W}_{1} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{C}_{\mathrm{M}} \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{C}_{\mathrm{eg}} \cdot \mathrm{P}_{\text {ten }} \cdot \mathrm{lbf}=1256.05 \mathrm{lbf}$

Allowable Shear

Allowable Tension

$$
\begin{array}{ll}
Z_{\alpha \text { pos }}:=\frac{W^{\prime} \cdot Z^{\prime}}{W^{\prime} \cdot\left(\cos \left(\alpha_{\text {pos }}\right)\right)^{2}+Z^{\prime} \cdot\left(\sin \left(\alpha_{\text {pos }}\right)\right)^{2}}=1220.35 \mathrm{lbf} & \text { Intpos }:=\frac{R_{\text {pos }}}{Z_{\alpha \text { pos }}}=0.96 \\
Z_{\alpha n e g}:=\frac{W^{\prime} \cdot Z^{\prime}}{W^{\prime} \cdot\left(\cos \left(\alpha_{n e q}\right)\right)^{2}+Z^{\prime} \cdot\left(\sin \left(\alpha_{n e q}\right)\right)^{2}}=1220.35 \mathrm{lbf} & \text { Intneg }:=\frac{R_{n e g}}{Z_{\alpha n e g}}=0.96
\end{array}
$$

Fastener = "3/8 in Lag Screw SS"
Predrill = "Predrill Holes at 60\%-75\% D"
Penetration = "Verify Blocking Thickness"
Material = "Mixed Maple Southern Pine"
$G=0.55$
pten $=3.19$

RICE	105 School Creek Trail Luxemburg, WI 54217 Phone: (920) 617-1042 Fax: (920) 617-1100 www.rice-inc.com	Project Description: Star System - IBC 2021	Job No: R23-08-261			
			Engineer	JDB	Sheet No:	A5B
			Date:	1/10/2024	Rev:	
Template: REI-MC-7001			Chk By:		Date:	

Lag Screws	Detail Ref.	Sheet No: A5C

Spruce Pine-Fir

$\mathrm{p}:=4.3125$	penetration, in
$\mathrm{t}_{\text {shim }}:=0.75$	thickness of shim, in
$C_{D}:=1.6$	load duration factor, 10.3.2
$C_{M}:=1.0$	wet service factor, 10.3.3
$C_{t}:=1.0$	temperature factor, 10.3.4
$C_{g}:=1.0$	group action factor, 10.3.6
$C_{\Delta}:=1.0$	geometry factor, 11.5.1
$C_{e g}:=1.0$	end grain factor, 11.5.2
$C_{d i}:=1.0$	diaphragm factor, 11.5.3
$\theta:=90$	angle of load to grain, degree

Calculations

$Z_{I m}:=\frac{D_{r} \cdot I_{m} \cdot F_{e m}}{R_{d 1}}=675.33 \quad Z_{I s}:=\frac{D_{r} \cdot I_{s} \cdot F_{e s}}{R_{d 1}}=854.63 \quad Z_{I I}:=\frac{\mathrm{k}_{1} \cdot \mathrm{D}_{\mathrm{r}} \cdot \mathrm{I}_{\mathrm{s}} \cdot \mathrm{F}_{\mathrm{es}}}{\mathrm{R}_{\mathrm{d} 2}}=316.97 \quad \mathrm{Z}_{I I I}:=\frac{\mathrm{k} \cdot}{\left(1+2 \cdot \mathrm{D}_{\mathrm{r}} \cdot \mathrm{Im}_{\mathrm{m}} \cdot \mathrm{F}_{\mathrm{em}}\right.}=358.38$
$Z_{\text {IIIs }}:=\frac{\mathrm{k}_{3} \cdot D_{r} \cdot \mathrm{I}_{\mathrm{s}} \cdot F_{e m}}{\left(2+R_{e}\right) \cdot R_{d} 3}=202.26 \quad Z_{\mathrm{IV}}:=\frac{\mathrm{Dr}^{2}}{R_{d 3}} \cdot \sqrt{\frac{2 \cdot F_{e m} \cdot F_{y b}}{3 \cdot\left(1+R_{e}\right)}}=188.37$
$Z_{1}:=\min \left(Z_{\text {Im }}, Z_{I s}, Z_{I I}, Z_{I I I m}, Z_{I I I s}, Z_{I V}\right)=188.37 \quad R_{\text {pos }}:=\sqrt{T_{\text {pos }}{ }^{2}+V_{\text {pos }}{ }^{2}}=1176.34 \mathrm{lbf} \quad \quad R_{n e g}:=\sqrt{T_{n e g}}{ }^{2}+V_{n e g}{ }^{2}=1176.34 \mathrm{lbf}$
$W_{1}=234.78 \quad \alpha_{\text {pos }}:=\operatorname{atan}\left(T_{\text {pos }} \cdot V_{\text {pos }}{ }^{-1}\right)=85.07 \cdot \operatorname{deg} \quad \alpha_{\text {neg }}:=\operatorname{atan}\left(T_{n e g} \cdot V_{\text {neg }}-1\right)=85.07 \cdot \operatorname{deg}$

Results

$Z^{\prime}:=Z_{1} \cdot C_{D} \cdot C_{M} \cdot C_{t} \cdot C_{g} \cdot C_{\Delta} \cdot C_{e g} \cdot C_{d i} \cdot \mathrm{lbf}=301.39 \mathrm{lbf}$
$\mathrm{W}^{\prime}:=\mathrm{W}_{1} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{C}_{\mathrm{M}} \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{C}_{\mathrm{eg}} \cdot \mathrm{P}_{\text {ten }} \cdot \mathrm{lbf}=1209.14 \mathrm{lbf}$

Allowable Shear

Allowable Tension

$$
\begin{array}{ll}
Z_{\alpha \text { pos }}:=\frac{W^{\prime} \cdot Z^{\prime}}{W^{\prime} \cdot\left(\cos \left(\alpha_{\text {pos }}\right)\right)^{2}+Z^{\prime} \cdot\left(\sin \left(\alpha_{p o s}\right)\right)^{2}}=1182.88 \mathrm{lbf} & \text { Intpos }:=\frac{R_{\text {pos }}}{Z_{\alpha p o s}}=0.99 \\
Z_{\alpha n e g}:=\frac{W^{\prime} \cdot Z^{\prime}}{W^{\prime} \cdot\left(\cos \left(\alpha_{n e g}\right)\right)^{2}+Z^{\prime} \cdot\left(\sin \left(\alpha_{n e g}\right)\right)^{2}}=1182.88 \mathrm{lbf} & \text { Intneg }:=\frac{R_{n e g}}{Z_{\alpha n e g}}=0.99
\end{array}
$$

Fastener = "3/8 in Lag Screw SS"
Predrill = "Predrill Holes at 40\%-70\% D"
Penetration = "Verify Blocking Thickness"
Material = "Spruce Pine-Fir"
$G=0.42$
pten $=3.22$

RICE ENGINEERING	105 School Creek Trail Luxemburg, WI 54217 Phone: (920) 617-1042 Fax: (920) 617-1100 www.rice-inc.com	Project Description: Star System - IBC 2021	Job No: R23-08-261			
			Engineer	JDB	Sheet No:	A5C
			Date:	1/10/2024	Rev:	
Template: REI-MC-7001			Chk By:		Date:	

Lag Screws	Detail Ref.	Sheet No: A5.1

Mixed Maple Southern Pine \quad

$p:=4.5$	penetration, in
$t_{\text {shim }}:=0.75$	thickness of shim, in
$C_{D}:=1.6$	load duration factor, 10.3.2
$C_{M}:=0.7$	wet service factor, 10.3.3
$C_{t}:=1.0$	temperature factor, 10.3.4
$C_{g}:=1.0$	group action factor, 10.3.6
$C_{\Delta}:=1.0$	geometry factor, 11.5.1
$C_{e g}:=1.0$	end grain factor, 11.5.2
$C_{d i}:=1.0$	diaphragm factor, 11.5.3
$\theta:=90$	angle of load to grain, degree

Calculations

$Z_{I m}:=\frac{D_{r} \cdot I_{m} \cdot F_{e m}}{R_{d 1}}=998.45 \quad Z_{I s}:=\frac{D_{r} \cdot I_{s} \cdot F_{e s}}{R_{d 1}}=854.63 \quad Z_{I I}:=\frac{\mathrm{k}_{1} \cdot D_{r} \cdot I_{s} \cdot F_{e s}}{R_{d 2}}=454.32 \quad Z_{I I I m}:=\frac{\mathrm{k}_{2} \cdot D_{r} \cdot I_{m} \cdot F_{e m}}{\left(1+2 R_{e}\right) \cdot R_{d} 3}=518.01$
$Z_{\text {IIIs }}:=\frac{\mathrm{k}_{3} \cdot \mathrm{D}_{\mathrm{r}} \cdot \mathrm{l}_{\mathrm{s}} \cdot \mathrm{F}_{\mathrm{em}}}{\left(2+\mathrm{R}_{\mathrm{e}}\right) \cdot R_{\mathrm{d} 3}}=236.93 \quad \mathrm{Z}_{\mathrm{IV}}:=\frac{\mathrm{D}_{\mathrm{r}}{ }^{2}}{\mathrm{R}_{\mathrm{d} 3}} \cdot \sqrt{\frac{2 \cdot F_{e m} \cdot F_{y b}}{3 \cdot\left(1+R_{e}\right)}}=225.73$
$Z_{1}:=\min \left(Z_{\text {Im }}, Z_{I s}, Z_{I I}, Z_{I I I m}, Z_{I I I s}, Z_{I V}\right)=225.73 \quad R_{\text {pos }}:=\sqrt{T_{\text {pos }}{ }^{2}+V_{\text {pos }}{ }^{2}}=1176.34 \mathrm{lbf} \quad \quad R_{n e g}:=\sqrt{T_{n e g}}{ }^{2}+V_{n e g}{ }^{2}=1176.34 \mathrm{lbf}$
$W_{1}=351.84 \quad \alpha_{\text {pos }}:=\operatorname{atan}\left(T_{\text {pos }} \cdot V_{\text {pos }}{ }^{-1}\right)=85.07 \cdot \operatorname{deg} \quad \alpha_{\text {neg }}:=\operatorname{atan}\left(T_{\text {neg }} \cdot V_{\text {neg }}-1\right)=85.07 \cdot \operatorname{deg}$

Results

$$
\begin{aligned}
& \mathrm{Z}^{\prime}:=\mathrm{Z}_{1} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{C}_{\mathrm{M}} \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{C}_{\mathrm{g}} \cdot \mathrm{C}_{\Delta} \cdot \mathrm{C}_{\mathrm{eg}} \cdot \mathrm{C}_{\mathrm{di}} \cdot \mathrm{lbf}=252.82 \mathrm{lbf} \\
& \mathrm{~W}^{\prime}:=\mathrm{W}_{1} \cdot \mathrm{C}_{\mathrm{D}} \cdot C_{M} \cdot C_{t} \cdot C_{e g} \cdot P_{t e n} \cdot \mathrm{lbf}=1305.31 \mathrm{lbf}
\end{aligned}
$$

Allowable Shear

Allowable Tension

$$
\begin{array}{ll}
Z_{\alpha \text { pos }}:=\frac{W^{\prime} \cdot Z^{\prime}}{W^{\prime} \cdot\left(\cos \left(\alpha_{\text {pos }}\right)\right)^{2}+Z^{\prime} \cdot\left(\sin \left(\alpha_{\text {pos }}\right)\right)^{2}}=1266.44 \mathrm{lbf} & \text { Intpos }:=\frac{R_{\text {pos }}}{Z_{\alpha p o s}}=0.93 \\
Z_{\text {aneg }}:=\frac{W^{\prime} \cdot Z^{\prime}}{W^{\prime} \cdot\left(\cos \left(\alpha_{\text {neg }}\right)\right)^{2}+Z^{\prime} \cdot\left(\sin \left(\alpha_{\text {neg }}\right)\right)^{2}}=1266.44 \mathrm{lbf} & \text { Intneg }:=\frac{R_{n e g}}{Z_{\text {neeg }}}=0.93
\end{array}
$$

Fastener = "3/8 in Lag Screw SS"
Predrill = "Predrill Holes at 60\%-75\% D"
Penetration = "Verify Blocking Thickness"
Material = "Mixed Maple Southern Pine"
$G=0.55$
Pten $=3.31$

RICE ENGINEERING	105 School Creek Trail Luxemburg, WI 54217 Phone: (920) 617-1042 Fax: (920) 617-1100 www.rice-inc.com	Project Description:$\text { Star System - IBC } 2018$	Job No: R21-06-033			
			Engineer	JDB	Sheet No:	A5. 1
			Date:	7/14/2021	Rev:	
Template: REI-MC-7001			Chk By:		Date:	

Chk Concrete (for reference only):

$$
\phi \mathrm{F}_{\mathrm{p} 2}:=\phi \cdot 0.85 \cdot \mathrm{~A}_{2} \cdot \mathrm{f}^{\prime} \mathrm{c} 2 \quad \phi \mathrm{~F}_{\mathrm{p} 2}=15028 \quad \mathrm{lb} \quad \text { (Allowable Bearing Load) }
$$

Note: Recommend Rockite for interior use and Kwixset for exterior (or interior) use.

Use 6,000 psi, Cement or Epoxy Based Grout

 Non-Shrink \& Non-Metallic 4" Min. Post Embedment in Grout-Design of bearing on concrete by others -Design of concrete breakout and point loads by others. E.O.R. to check concrete breakout
-Recommend bituminus paint or other inert coating to isolate aluminum from grout on the outside and inside walls of the post

ANCHORS = "REINFORCEMENT OR ADDITIONAL CHANGES REQUIRED; EOR TO CHECK CONCRETE BREAKOUT"

$$
\begin{aligned}
& \beta_{2}:=\left\{\begin{array}{l}
\max \left(\binom{0.85-.05 \cdot \frac{f^{\prime} c 2-4000}{1000}}{0.65}\right) \text { if } f^{\prime}{ }_{c 2} \geq 4000 \quad \beta_{2}=0.85 \\
0.85 \text { otherwise }
\end{array}\right. \\
& \begin{array}{llll}
\mathrm{a}_{2}:=\beta_{2} \cdot \mathrm{c}_{1} & \mathrm{a}_{2}=1.7 & \text { in } & \text { (Bearing Area) } \\
\mathrm{A}_{2}:=\mathrm{a}_{2} \cdot \mathrm{D}_{2} & \mathrm{~A}_{2}=6.8 & \text { in } & \text { (Load Eccentricity) } \\
\mathrm{E}_{2}:=\mathrm{L}_{1}-\mathrm{a}_{2} & \mathrm{E}_{2}=2.3 & \text { in } & \text { (Lo }
\end{array} \\
& P_{2}:=\frac{M_{\max }}{E_{2}}+\frac{R_{\max }}{2} \quad P_{2}=6052 \quad \text { lb } \quad \text { (Bearing Load) } \\
& \text { Post Embedded Min. } \\
& \text { 4" Into Concrete With } \\
& \text { Solid Rockite Infill }
\end{aligned}
$$

Section Properties	Detail Ref.	Sheet No: S1

Area:	0.8025 sq in
Perimeter:	9.8800 in
Bounding box:	X: -0.8650 -- 0.8650 in
	Y: -0.8650 -- 0.8650 in
Centroid:	X: 0.0000 in
	Y: 0.0000 in
Moments of inertia:	X: 0.3466 in4
	Y: 0.1098 in4
Radii of gyration:	X: 0.6572 in
	Y: 0.3699 in
Section Modulus:	X: 0.401 in3
	Y: 0.127 in3

RICE	105 School Creek Trail Luxemburg, WI 54217 Phone: (920) 617-1042 Fax: (920) 617-1100 www.rice-inc.com	Project Description: Star System - IBC 2021	Job No: R23-08-261			
			Engineer:	JDB	Sheet No:	S1
ENGINEERING			Date:	1/10/2024	Rev:	
Template: REI-MC-5701			Chk By:		Date:	

Section Properties	Detail Ref.	Sheet No: S2

Area:	0.2125 sq in
Perimeter:	6.8720 in
Bounding box:	X: $-0.4247-1.0753$ in
	Y: $-0.3698-0.6302$ in
Centroid:	X: 0.0000 in
	Y: 0.0000 in
Moments of inertia:	X: 0.0281 in4
	Y: 0.0389 in4
Section Modulus:	X: 0.045 in3
	Y: 0.036 in3

Area: $\quad 0.1864$ sq in
Perimeter: $\quad 6.0440$ in
Bounding box: $\quad X:-0.9791-0.3909$ in Y: -0.6086 -- 0.3084 in
Centroid: $\quad X: 0.0000$ in
$\mathrm{Y}: 0.0000$ in
Moments of inertia: $\quad \mathrm{X}: 0.0180 \mathrm{in} 4$
$Y: 0.0295$ in4
Section Modulus: $\quad X: 0.03 \mathrm{in} 3$
Y: 0.03 in3

RICE	105 School Creek Trail Luxemburg, WI 54217 Phone: (920) 617-1042 Fax: (920) 617-1100 www.rice-inc.com	Project Description: Star System - IBC 2021	Job No: R23-08-261			
			Engineer	JDB	Sheet No:	S2
ENGINEERING			Date:	1/10/2024	Rev:	
Template: REI-MC-5701			Chk By:		Date:	

APPENDIX A: CONCRETE ANCHORS

Hilti PROFIS Engineering 3.0.90
www.hilti.com

Company:		Page:	1
Address:	Specifier:		
Phone I Fax:	I	E-Mail:	
Design:	Date:	$1 / 11 / 2024$	

Fastening point:
Specifier's comments:

1 Input data

Anchor type and diameter:

Item number:

Effective embedment depth:
Material:
Evaluation Service Report:
Issued I Valid:
Proof:
Stand-off installation:
Anchor plate ${ }^{R}$:
Profile:
Base material:

Installation:

Reinforcement:

HIT-HY 200 V3 + HIT-Z-R 3/8
2018451 HIT-Z-R 3/8" x 4 3/8" (element) / 2334276 HIT-HY 200-R V3 (adhesive) $\mathrm{h}_{\text {ef,opti }}=2.690 \mathrm{in} .\left(\mathrm{h}_{\text {ef,limit }}=2.750 \mathrm{in}.\right)$

A4

ESR-4868
11/1/2022 | 11/1/2024
Design Method ACI 318-19 / Chem
$e_{b}=0.000$ in. (no stand-off); $t=0.375$ in.
$I_{x} \times I_{y} \times t=5.000$ in. $\times 5.000$ in. $\times 0.375$ in.; (Recommended plate thickness: not calculated)
no profile
cracked concrete, 4000, $\mathrm{f}_{\mathrm{c}}{ }^{\prime}=4,000 \mathrm{psi} ; \mathrm{h}=5.000 \mathrm{in}$., Temp. short/long: $130 / 110^{\circ} \mathrm{F}$
hammer drilled hole, Installation condition: Dry
tension: not present, shear: not present; no supplemental splitting reinforcement present edge reinforcement: none or < No. 4 bar
${ }^{R}$ - The anchor calculation is based on a rigid anchor plate assumption.
Geometry [in.] \& Loading [lb, in.lb]

Hilti PROFIS Engineering 3.0.90
www.hilti.com

Company:		Page:	2
Address:	Specifier:		
Phone I Fax:	I	E-Mail:	
Design:	Date:	$1 / 11 / 2024$	

Fastening point:
1.1 Design results

Case	Description	Forces [lb] / Moments [in.lb]	Seismic
1	Combination 1	$N=0 ; V_{x}=323 ; V_{y}=0 ;$	Max. Util. Anchor [\%]
		$M_{x}=0 ; M_{y}=13,547 ; M_{z}=0 ;$	100

2 Load case/Resulting anchor forces

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	1,749	81	81	0
2	0	81	81	0
3	1,749	81	81	0
4	0	81	81	0

max. concrete compressive strain:
0.28 [\%] 1,233 [psi]
max. concrete compressive stress:
0 [lb]
resulting compression force in $(x / y)=(4.622 / 2.500): 3,499[\mathrm{lb}]$

2

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N_{ua} [lb]	Capacity $\boldsymbol{\phi} \mathrm{N}_{\mathrm{n}}$ [lb]	Utilization $\beta_{\mathrm{N}}=\mathrm{N}_{\mathrm{ua}} / \boldsymbol{\phi} \mathrm{N}_{\mathrm{n}}$	Status
Steel Strength*	1,749	4,749	37	OK
Pullout Strength*	1,749	5,169	34	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	3,499	3,503	100	OK

* highest loaded anchor **anchor group (anchors in tension)

Hilti PROFIS Engineering 3.0.90
www.hilti.com

Company:	Page:	3	
Address:	Specifier:		
Phone I Fax:	I	E-Mail:	
Design:	D4- IBC Adhesive	Date:	$1 / 11 / 2024$

Fastening point:

3.1 Steel Strength

$\mathrm{N}_{\mathrm{sa}}=$ ESR value refer to ICC-ES ESR-4868
$\phi N_{\text {sa }} \geq N_{\text {ua }} \quad$ ACl 318-19 Table 17.5.2
Variables

$\mathrm{A}_{\text {se, } \mathrm{N}}\left[\mathrm{in} .{ }^{2}\right]$	$\mathrm{f}_{\text {uta }}[\mathrm{psi}]$
0.08	94,200

Calculations

$\frac{\mathrm{N}_{\mathrm{sa}}[\mathrm{lb}]}{7,306}$

Results

$\mathrm{N}_{\mathrm{sa}}[\mathrm{lb}]$	$\phi_{\text {steel }}$	$\phi \mathrm{N}_{\mathrm{sa}}[\mathrm{lb}]$	$\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$
7,306	0.650	4,749	1,749

3.2 Pullout Strength

$N_{p n}=N_{p} \lambda_{a} \quad$ refer to ICC-ES ESR-4868
$\phi \mathrm{N}_{\text {pn }} \geq \mathrm{N}_{\text {ua }} \quad$ ACI 318-19 Table 17.5.2

Variables

λ_{a}	$\mathrm{~N}_{\mathrm{p}}[\mathrm{lb}]$
1.000	7,952

Calculations

$\mathrm{N}_{\mathrm{pn}}[\mathrm{lb}]$
7,952

Results

$\mathrm{N}_{\mathrm{pn}}[\mathrm{lb}]$	$\phi_{\text {concrete }}$	$\phi \mathrm{N}_{\mathrm{pn}}[\mathrm{lb}]$	$\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$
7,952	0.650	5,169	1,749

Hilti PROFIS Engineering 3.0.90
www.hilti.com

Company:		Page:	4
Address:	Specifier:		
Phone I Fax:	A4- IBC Adhesive	E-Mail:	
Design:	Date:	$1 / 11 / 2024$	
Fastening point:			

3.3 Concrete Breakout Failure

$N_{\text {cbg }}=\left(\frac{A_{\mathrm{Nc}}}{\mathrm{A}_{\mathrm{Nc} 0}}\right) \psi_{\text {ec, } \mathrm{N}} \psi_{\text {ed,N }} \psi_{\mathrm{c}, \mathrm{N}} \psi_{\mathrm{cp}, \mathrm{N}} \mathrm{N}_{\mathrm{b}} \quad \quad$ ACl 318-19 Eq. (17.6.2.1b)
$\phi \mathrm{N}_{\text {cbg }} \geq \mathrm{N}_{\text {ua }} \quad$ ACl 318-19 Table 17.5.2
$A_{\text {Nc }} \quad$ see $\mathrm{ACl} 318-19$, Section 17.6.2.1, Fig. R 17.6.2.1(b)
$A_{\text {NcO }}=9 h_{\text {ef }}^{2} \quad \quad$ ACl 318-19 Eq. (17.6.2.1.4
$\psi_{\text {ec, } \mathrm{N}}=\left(\frac{1}{1+\frac{2 \mathrm{e}_{\mathrm{N}}^{\prime}}{3 \mathrm{~h}_{\mathrm{ef}}}}\right) \leq 1.0 \quad \quad$ ACl 318-19 Eq. (17.6.2.3.1)
$\psi_{\text {ed,N }}=0.7+0.3\left(\frac{\mathrm{C}_{\mathrm{a}, \mathrm{min}}}{1.5 h_{\mathrm{ef}}}\right) \leq 1.0 \quad \quad$ ACl 318-19 Eq. (17.6.2.4.1b)
$\psi_{c p, N}=\operatorname{MAX}\left(\frac{\mathrm{C}_{\mathrm{a}, \text { min }}}{\mathrm{C}_{\mathrm{ac}}}, \frac{1.5 \mathrm{~h}_{\mathrm{ef}}}{\mathrm{C}_{\mathrm{ac}}}\right) \leq 1.0 \quad \quad$ ACI 318-19 Eq. (17.6.2.6.1b)
$N_{b}=k_{c} \lambda_{a} \sqrt{f_{c}^{\prime}} h_{e f}^{1.5} \quad$ ACI 318-19 Eq. (17.6.2.2.1)

Variables

$\mathrm{h}_{\text {ef }}[$ in. $]$	$\mathrm{e}_{\mathrm{c} 1, \mathrm{~N}}[\mathrm{in}]$.	$\mathrm{e}_{\mathrm{c} 2, \mathrm{~N}}[\mathrm{in}]$.	$\mathrm{c}_{\mathrm{a}, \text { min }}[\mathrm{in}]$.	$\psi_{\mathrm{c}, \mathrm{N}}$
2.690	0.000	0.000	3.250	1.000

C_{ac} [in.]	k_{c}	λ_{a}	f_{c} [psi]
6.678	17	1.000	4,000

Calculations

$\mathrm{A}_{\mathrm{Nc}}\left[\mathrm{in} .{ }^{2}\right]$	$\mathrm{A}_{\mathrm{Nco}}\left[\mathrm{in}^{2}{ }^{2}\right]$	$\psi_{\text {ec } 1, \mathrm{~N}}$	$\psi_{\text {ec2,N}}$	$\psi_{\text {ed,N }}$	$\psi_{\text {cp,N }}$	$\mathrm{N}_{\mathrm{b}}[\mathrm{lb}]$
78.57	65.12	1.000	1.000	0.942	1.000	4,743

Results

$\mathrm{N}_{\mathrm{cbg}}[\mathrm{lb}]$	$\phi_{\text {concrete }}$	$\phi \mathrm{N}_{\mathrm{cbg}}[\mathrm{lb}]$	$\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$
5,389	0.650	3,503	3,499

Hilti PROFIS Engineering 3.0.90
www.hilti.com

Company:		Page:	5
Address:	Specifier:		
Phone I Fax:	E-Mail:		
Design:	D4- IBC Adhesive		Date:
Fastening point:			$1 / 11 / 2024$

4 Shear load

	Load $\mathrm{V}_{\text {ua }}$ [lb]	Capacity $\boldsymbol{\phi} \mathrm{V}_{\mathrm{n}}$ [lb]	Utilization $\beta_{\mathrm{v}}=\mathrm{V}_{\mathrm{ua}} / \boldsymbol{\prime} \mathrm{V}_{\mathrm{n}}$	Status
Steel Strength*	81	2,630	4	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Concrete Breakout Strength controls)**	323	11,169	3	OK
Concrete edge failure in direction $\mathrm{y}+^{* *}$	323	3,932	9	OK

4.1 Steel Strength

$V_{\text {sa }}=E S R$ value	refer to ICC-ES ESR-4868
$\phi V_{\text {steel }} \geq V_{\text {ua }}$	ACI 318-19 Table 17.5.2

Variables

$\mathrm{A}_{\text {se, } \mathrm{V}}\left[\mathrm{in}.{ }^{2}\right]$	$\mathrm{f}_{\mathrm{uta}}[\mathrm{psi}]$
0.08	94,200

Calculations

$\frac{\mathrm{V}_{\mathrm{sa}}[\mathrm{lb}]}{4,384}$

Results

$\mathrm{V}_{\text {sa }}[\mathrm{bb}]$	$\phi_{\text {steel }}$	$\phi \mathrm{V}_{\text {sa }}[\mathrm{lb}]$	$\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$
4,384	0.600	2,630	81

Hilti PROFIS Engineering 3.0.90
www.hilti.com

Company:		Page:	6
Address:	Specifier:		
Phone I Fax:	A4- IBC Adhesive	E-Mail:	
Design:	Date:	$1 / 11 / 2024$	
Fastening point:			

4.2 Pryout Strength (Concrete Breakout Strength controls)

$V_{c p g}=k_{c p}\left[\left(\frac{A_{\text {Nc }}}{A_{\text {cco }}}\right) \psi_{e c, N} \psi_{e d, N} \psi_{c, N} \psi_{c p, N} N_{\text {b }}\right]$	ACl 318-19 Eq. (17.7.3.1b)
$\phi \mathrm{V}_{\text {cpg }} \geq \mathrm{V}_{\text {ua }}$	ACI 318-19 Table 17.5.2
$\mathrm{A}_{\mathrm{Nc}} \quad$ see ACl $318-19$, Section 17.6.2.1, Fig. R 17.6.2.1(b)	
$\mathrm{A}_{\text {Nco }}=9 \mathrm{~h}_{\text {ef }}^{2}$	ACI 318-19 Eq. (17.6.2.1.4)
$\psi_{e c, N}=\left(\frac{1}{1+\frac{2 e_{N}^{\prime}}{3 h_{\text {ef }}}}\right) \leq 1.0$	ACl 318-19 Eq. (17.6.2.3.1)
$\psi_{\text {ed, } \mathrm{N}}=0.7+0.3\left(\frac{\mathrm{C}_{\text {amin }}}{1.5 \mathrm{~h}_{\text {ef }}}\right) \leq 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\psi_{\mathrm{cp}, \mathrm{N}}=\operatorname{MAX}\left(\frac{\mathrm{c}_{\mathrm{a} \text { min }}}{\mathrm{Cac}_{\mathrm{ac}}}, \frac{1.5 \mathrm{~h}_{\mathrm{ef}}}{\mathrm{Cac}_{\mathrm{ac}}}\right) \leq 1.0$	ACl 318-19 Eq. (17.6.2.6.1b)
$N_{b} \quad=k_{c} \lambda_{a} \sqrt{f_{c}^{\prime}} h_{\text {ef }}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

k_{cp}	$\mathrm{h}_{\text {ef }}[$ in. $]$	$\mathrm{e}_{\mathrm{c} 1, \mathrm{~N}}[$ in. $]$	$\mathrm{e}_{\mathrm{c} 2, \mathrm{~N}}[\mathrm{in}]$.	$\mathrm{c}_{\mathrm{a}, \text { min }}[\mathrm{in}]$.
2	2.690	0.000	0.000	3.250

$\psi_{\mathrm{c}, \mathrm{N}}$	c_{ac} [in.]	k_{c}	λ_{a}	$\dot{f}_{\mathrm{c}}[\mathrm{psi}]$
1.000	6.678	17	1.000	4,000

Calculations

$\mathrm{A}_{\mathrm{Nc}}\left[\mathrm{in} .{ }^{2}\right]$	$\mathrm{A}_{\mathrm{Nco}}\left[\mathrm{in}^{2}{ }^{2}\right]$	$\psi_{\text {ec } 1, \mathrm{~N}}$	$\psi_{\text {ecc,N}}$	$\psi_{\text {ed,N }}$	$\psi_{\text {cp,N }}$	$\mathrm{N}_{\mathrm{b}}[\mathrm{lb}]$
116.31	65.12	1.000	1.000	0.942	1.000	4,743

Results

$\mathrm{V}_{\text {cpp }}[\mathrm{lb}]$	$\phi_{\text {concrete }}$	$\phi \mathrm{V}_{\text {cpg }}[\mathrm{lb}]$	$\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$
15,956	0.700	11,169	323

Hilti PROFIS Engineering 3.0.90
www.hilti.com

Company:		Page:	7
Address:	Specifier:		
Phone I Fax:	I	E-Mail:	
Design:	Date:	$1 / 11 / 2024$	
Fastening point:			

4.3 Concrete edge failure in direction $\mathrm{y}+$

$$
V_{\mathrm{cbg}}=\left(\frac{\mathrm{A}_{\mathrm{Vc}}}{\mathrm{~A}_{\mathrm{Vc} 0}}\right) \psi_{e \mathrm{ec}, \mathrm{~V}} \psi_{\mathrm{ed}, \mathrm{~V}} \psi_{\mathrm{c}, \mathrm{~V}} \psi_{\mathrm{h}, \mathrm{~V}} \psi_{\text {parallel, },} V_{\mathrm{b}} \quad \text { ACl 318-19 Eq. (17.7.2.1b) }
$$

$$
\phi \mathrm{V}_{\mathrm{cbg}} \geq \mathrm{V}_{\mathrm{ua}}
$$

ACI 318-19 Table 17.5.2
$A_{V_{c}} \quad$ see $A C l$ 318-19, Section 17.7.2.1, Fig. R 17.7.2.1(b)

$$
\mathrm{A}_{\mathrm{Vc} 0}=4.5 \mathrm{c}_{\mathrm{a} 1}^{2}
$$

ACI 318-19 Eq. (17.7.2.1.3)
$\psi_{e c, V}=\left(\frac{1}{1+\frac{e_{v}^{\prime}}{1.5 c_{a 1}}}\right) \leq 1.0$
ACI 318-19 Eq. (17.7.2.3.1)
$\psi_{\text {ed }, V}=0.7+0.3\left(\frac{\mathrm{C}_{\mathrm{a} 2}}{1.5 \mathrm{c}_{\mathrm{a} 1}}\right) \leq 1.0 \quad \quad$ ACI 318-19 Eq. (17.7.2.4.1b)
$\psi_{\mathrm{h}, \mathrm{V}}=\sqrt{\frac{1.5 \mathrm{c}_{\mathrm{a} 1}}{\mathrm{~h}_{\mathrm{a}}}} \geq 1.0 \quad \quad$ ACI 318-19 Eq. (17.7.2.6.1)
$\mathrm{V}_{\mathrm{b}}=\left(7\left(\frac{\mathrm{l}_{\mathrm{e}}}{\mathrm{d}_{\mathrm{a}}}\right)^{0.2} \sqrt{\mathrm{~d}_{\mathrm{a}}}\right) \lambda_{\mathrm{a}} \sqrt{\mathrm{f}_{\mathrm{c}}} \mathrm{C}_{\mathrm{a} 1}^{1.5} \quad$ ACI 318-19 Eq. (17.7.2.2.1a)

Variables

$\mathrm{c}_{\mathrm{a} 1}$ [in.]	$\mathrm{c}_{\mathrm{a} 2}$ [in.]	e_{cV} [in.]	$\psi_{\mathrm{c}, \mathrm{V}}$	h_{a} [in.]
3.250	3.250	0.000	1.000	5.000
$\mathrm{I}_{\mathrm{e}}[\mathrm{in}]$.	λ_{a}	$\mathrm{d}_{\mathrm{a}}[\mathrm{in}]$.	$\mathrm{f}_{\mathrm{c}}^{\prime}[\mathrm{psi}]$	$\psi_{\text {paralle, }, \mathrm{V}}$
2.690	1.000	0.375	4,000	2.000

Calculations

$\mathrm{A}_{\mathrm{Vc}_{c}}\left[\mathrm{in}.{ }^{2}\right]$	$\mathrm{A}_{\mathrm{Vco}}\left[\mathrm{in}.{ }^{2}\right]$	$\psi_{\text {ec,V }}$	$\psi_{\text {ed }, \mathrm{V}}$	$\psi_{\mathrm{h}, \mathrm{V}}$	$\mathrm{V}_{\mathrm{b}}[\mathrm{lb}]$
56.67	47.53	1.000	1.000	1.000	2,356

Results

$\mathrm{V}_{\mathrm{cbg}}[\mathrm{lb}]$	$\phi_{\text {concrete }}$	$\phi \mathrm{V}_{\mathrm{cbg}}[\mathrm{lb}]$	$\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$
5,617	0.700	3,932	323

5 Combined tension and shear loads, per ACI 318-19 section 17.8

β_{N}	β_{V}	ζ	Utilization $\beta_{\mathrm{N}, \mathrm{V}}[\%]$	Status
0.999	0.082	1.000	91	OK

$\beta_{\mathrm{NV}}=\left(\beta_{\mathrm{N}}+\beta_{\mathrm{V}}\right) / 1.2<=1$

Hilti PROFIS Engineering 3.0.90
www.hilti.com

Company:		Page:	8
Address:	Specifier:	8	
Phone I Fax:	A4- IBC Adhesive	E-Mail:	
Design:		Date:	$1 / 11 / 2024$
Fastening point:			

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

Hilti PROFIS Engineering $\mathbf{3 . 0 . 9 0}$
www.hilti.com

Company:		Page:	9
Address:	Specifier:		
Phone I Fax:	I	E-Mail:	
Design:	Date:	$1 / 11 / 2024$	

Fastening point:

7 Installation data

Profile: no profile

Hole diameter in the fixture (pre-setting) : $\mathrm{d}_{\mathrm{f}}=0.438$ in.
Hole diameter in the fixture (through fastening) : $\mathrm{d}_{\mathrm{f}}=0.500 \mathrm{in}$.
Plate thickness (input): 0.375 in.
Recommended plate thickness: not calculated
Drilling method: Hammer drilled
Cleaning: Compressed air cleaning of the drilled hole according to instructions for use is required

Anchor type and diameter: HIT-HY 200 V3 + HIT-Z-R 3/8
Item number: 2018451 HIT-Z-R 3/8" x 4 3/8" (element) /
2334276 HIT-HY 200-R V3 (adhesive)
Maximum installation torque: 354 in.lb
Hole diameter in the base material: 0.438 in.
Hole depth in the base material: 3.690 in.
Minimum thickness of the base material: 4.940 in.

3/8 Hilti HIT-Z Stainless steel non-cleaning bonded expansion anchor with Hilti HIT-HY 200 V3 Safe Set System

7.1 Recommended accessories

Drilling	Cleaning	Setting
- Suitable Rotary Hammer	$\bullet-$	• Dispenser including cassette and mixer
- Properly sized drill bit		- Torque wrench

Coordinates Anchor [in.]

Anchor	\mathbf{x}	\mathbf{y}	$\mathbf{c}_{-\mathbf{x}}$	$\mathbf{c}_{+\mathbf{x}}$	$\mathbf{c}_{-\mathbf{y}}$	$\mathbf{c}_{+\mathbf{y}}$
1	-1.750	-1.750	3.250	-	-	6.750
2	1.750	-1.750	6.750	-	-	6.750
3	-1.750	1.750	3.250	-	-	3.250
4	1.750	1.750	6.750	-	-	3.250

Hilti PROFIS Engineering 3.0.90
www.hilti.com

Company:		Page:	10
Address:	Specifier:	10	
Phone I Fax:	I	E-Mail:	
Design:	Date:	$1 / 11 / 2024$	
Fastening point:			

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

Hilti PROFIS Engineering 3.0.90
www.hilti.com

Company:		Page:	1
Address:	Specifier:		
Phone I Fax:	I	E-Mail:	
Design:	Date:	$1 / 11 / 2024$	

Fastening point:
Specifier's comments:

1 Input data

Anchor type and diameter:

Item number:
Effective embedment depth:
Material:
Evaluation Service Report:
Issued I Valid:
Proof:
Stand-off installation:
Anchor plate ${ }^{R}$:
Profile:
Base material:
Installation:
Reinforcement:

Kwik Bolt TZ2 - SS 304 3/8 (2 1/2) hnom3
2210245 KB-TZ2 3/8x5 SS304
$h_{\text {ef,act }}=2.500 \mathrm{in} ., h_{\text {nom }}=3.000 \mathrm{in}$.
AISI 304
ESR-4266
12/17/2021 | 12/1/2023
Design Method ACI 318-19 / Mech
$e_{b}=0.000$ in. (no stand-off); $t=0.375$ in.
$\mathrm{I}_{\mathrm{x}} \times \mathrm{I}_{\mathrm{y}} \times \mathrm{t}=5.000 \mathrm{in} . \times 5.000 \mathrm{in} . \times 0.375 \mathrm{in} . ;$ (Recommended plate thickness: not calculated)
no profile
cracked concrete, $4000, \mathrm{f}_{\mathrm{c}}{ }^{\prime}=4,000 \mathrm{psi} ; \mathrm{h}=5.000 \mathrm{in}$.
hammer drilled hole, Installation condition: Dry
tension: not present, shear: not present; no supplemental splitting reinforcement present edge reinforcement: none or < No. 4 bar
${ }^{R}$ - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] \& Loading [lb, in.lb]

nput data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Hilti PROFIS Engineering 3.0.90
www.hilti.com

Company:		Page:	2
Address:	Specifier:		
Phone I Fax:	I	E-Mail:	
Design:	Date:	$1 / 11 / 2024$	

Fastening point:
1.1 Design results

Case	Description	Forces [lb] / Moments [in.lb]	Seismic
1	Combination 1	$N=0 ; V_{x}=323 ; V_{y}=0 ;$	Max. Util. Anchor [\%]
		$M_{x}=0 ; M_{y}=13,547 ; M_{z}=0 ;$	100

2 Load case/Resulting anchor forces

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	1,722	81	81	0
2	0	81	81	0
3	1,722	81	81	0
4	0	81	81	0

max. concrete compressive strain:
$\begin{array}{ll}\text { max. concrete compressive stress: } & 1,453 \\ \text { resulting tension force in }(x / y)=(0.000 / 0.000) \text { : } & 0[\mathrm{lb}]\end{array}$
resulting compression force in $(x / y)=(4.684 / 2.500)$: 3,444 [lb]

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N_{ua} [lb]	Capacity $\boldsymbol{\phi} \mathbf{N}_{\mathbf{n}}$ [lb]	Utilization $\beta_{\mathrm{N}}=\mathrm{N}_{\mathrm{ua}} / \boldsymbol{\phi} \mathrm{N}_{\mathrm{n}}$	Status
Steel Strength*	1,722	4,637	38	OK
Pullout Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	3,444	3,465	100	OK

Hilti PROFIS Engineering 3.0.90
www.hilti.com

Company:		Page:
Address:		Specifier:
Phone I Fax:	A4- IBC KBTZ	E-Mail:
Design:	Date:	

Fastening point:

3.1 Steel Strength

$\mathrm{N}_{\mathrm{sa}}=\mathrm{ESR}$ value refer to ICC-ES ESR-4266
$\phi \mathrm{N}_{\mathrm{sa}} \geq \mathrm{N}_{\mathrm{ua}} \quad$ ACI 318-19 Table 17.5.2

Variables

$\mathrm{A}_{\mathrm{se}, \mathrm{N}}\left[\mathrm{in} .{ }^{2}\right]$	$\mathrm{f}_{\mathrm{uta}}[\mathrm{psi}]$
0.05	120,104

Calculations

$\mathrm{N}_{\mathrm{sa}}[\mathrm{lb}]$ 6,182

Results

$\mathrm{N}_{\mathrm{sa}}[\mathrm{lb}]$	$\phi_{\text {steel }}$	$\phi \mathrm{N}_{\mathrm{sa}}[\mathrm{lb}]$	$\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$
6,182	0.750	4,637	1,722

Hilti PROFIS Engineering 3.0.90
www.hilti.com

Company:		Page:	4
Address:	Specifier:		
Phone I Fax:	A4- IBC KBTZ	E-Mail:	
Design:	Date:	$1 / 11 / 2024$	
Fastening point:			

3.2 Concrete Breakout Failure

$\mathrm{N}_{\mathrm{cbg}}=\left(\frac{\mathrm{A}_{\mathrm{Nc}}}{\mathrm{A}_{\mathrm{Nc} 0}}\right) \psi_{\mathrm{ec}, \mathrm{N}} \psi_{\mathrm{ed}, \mathrm{N}} \psi_{\mathrm{c}, \mathrm{N}} \psi_{\mathrm{cp}, \mathrm{N}} \mathrm{N}_{\mathrm{b}} \quad \quad$ ACl 318-19 Eq. (17.6.2.1b)
$\phi \mathrm{N}_{\mathrm{cbg}} \geq \mathrm{N}_{\text {ua }} \quad$ ACI 318-19 Table 17.5.2
$A_{\text {Nc }} \quad$ see $\mathrm{ACl} 318-19$, Section 17.6.2.1, Fig. R 17.6.2.1(b)
$A_{\text {Nco }}=9 h_{\text {ef }}^{2} \quad A C l$ 318-19 Eq. (17.6.2.1.4)
$\psi_{\text {ec, } \mathrm{N}}=\left(\frac{1}{1+\frac{2 \mathrm{e}_{\mathrm{N}}^{\prime}}{3 \mathrm{~h}_{\mathrm{ef}}}}\right) \leq 1.0 \quad \quad$ ACl 318-19 Eq. (17.6.2.3.1)
$\psi_{\text {ed,N }}=0.7+0.3\left(\frac{\mathrm{C}_{\mathrm{a}, \mathrm{min}}}{1.5 h_{\mathrm{ef}}}\right) \leq 1.0 \quad \quad$ ACl 318-19 Eq. (17.6.2.4.1b)
$\psi_{c p, N}=\operatorname{MAX}\left(\frac{\mathrm{C}_{\mathrm{a}, \text { min }}}{\mathrm{C}_{\mathrm{ac}}}, \frac{1.5 \mathrm{~h}_{\mathrm{ef}}}{\mathrm{C}_{\mathrm{ac}}}\right) \leq 1.0 \quad \quad$ ACI 318-19 Eq. (17.6.2.6.1b)
$N_{b}=k_{c} \lambda_{a} \sqrt{f_{c}^{\prime}} h_{e f}^{1.5} \quad$ ACI 318-19 Eq. (17.6.2.2.1)

Variables

h_{ef} [in.]	$\mathrm{e}_{\mathrm{c} 1, \mathrm{~N}}[\mathrm{in}]$.	$\mathrm{e}_{\mathrm{c} 2, \mathrm{~N}}[\mathrm{in}]$.	$\mathrm{c}_{\mathrm{a}, \text { min }}[\mathrm{in}]$.	$\psi_{\mathrm{c}, \mathrm{N}}$
2.500	0.000	0.000	3.250	1.000

$\mathrm{C}_{\mathrm{ac}}[\mathrm{in}]$.	k_{c}	λ_{a}	$\dot{\mathrm{f}}_{\mathrm{c}}^{\prime}[\mathrm{psi}]$
4.000	17	1.000	4,000

Calculations

$\mathrm{A}_{\mathrm{Nc}}\left[\mathrm{in}.{ }^{2}\right]$	$\mathrm{A}_{\mathrm{Nc} 0}\left[\mathrm{in} .{ }^{2}\right]$	$\psi_{\text {ec } 1, \mathrm{~N}}$	$\psi_{\text {ec } 2, \mathrm{~N}}$	$\psi_{\text {edd }}$	$\psi_{\text {cp,N }}$	$\mathrm{N}_{\mathrm{b}}[\mathrm{lb}]$
73.50	56.25	1.000	1.000	0.960	1.000	4,250

Results

$\mathrm{N}_{\mathrm{cbg}}[\mathrm{lb}]$	$\phi_{\text {concrete }}$	$\phi \mathrm{N}_{\mathrm{cbg}}[\mathrm{lb}]$	$\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$
5,331	0.650	3,465	3,444

Hilti PROFIS Engineering 3.0.90
www.hilti.com

Company:		Page:	5
Address:	Specifier:		
Phone I Fax:	A4- IBC KBTZ	E-Mail:	
Design:	Date:	$1 / 11 / 2024$	
Fastening point:			

4 Shear load

	Load $\mathrm{V}_{\text {ua }}$ [lb]	Capacity $\boldsymbol{\phi} \mathrm{V}_{\mathrm{n}}$ [lb]	Utilization $\beta_{\mathrm{v}}=\mathrm{V}_{\mathrm{ua}} / \boldsymbol{\prime} \mathrm{V}_{\mathrm{n}}$	Status
Steel Strength*	81	3,177	3	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	323	11,196	3	OK
Concrete edge failure in direction $\mathrm{y}+{ }^{* *}$	323	3,875	9	OK

4.1 Steel Strength

$V_{\text {sa }}=$ ESR value	refer to ICC-ES ESR-4266
$\phi V_{\text {steel }} \geq V_{\text {ua }}$	ACI 318-19 Table 17.5.2

Variables

$\mathrm{A}_{\text {se, }, \mathrm{V}}\left[\mathrm{in}.{ }^{2}\right]$	$\mathrm{f}_{\mathrm{uta}}[\mathrm{psi}]$
0.05	120,104

Calculations

$\frac{\mathrm{V}_{\text {sa }}[\mathrm{bb}]}{4,887}$

Results

$\mathrm{V}_{\text {sa }}[\mathrm{lb}]$	$\phi_{\text {steel }}$	$\phi \mathrm{V}_{\text {sa }}[\mathrm{bb}]$	$\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$
4,887	0.650	3,177	81

Hilti PROFIS Engineering 3.0.90
www.hilti.com

Company:		Page:	6
Address:	Specifier:		
Phone I Fax:	I	E-Mail:	
Design:	Date:	$1 / 11 / 2024$	
Fastening point:			

4.2 Pryout Strength

$$
V_{c p g}=k_{c p}\left[\left(\frac{A_{N c}}{A_{N c 0}}\right) \psi_{e \mathrm{e}, \mathrm{~N}} \psi_{\mathrm{ed}, \mathrm{~N}} \psi_{\mathrm{c}, \mathrm{~N}} \psi_{\mathrm{cp}, \mathrm{~N}} \mathrm{~N}_{\mathrm{b}}\right] \quad \text { ACl 318-19 Eq. (17.7.3.1b) }
$$

$$
\phi \mathrm{V}_{\text {cpg }} \geq \mathrm{V}_{\text {ua }} \quad \text { ACI 318-19 Table 17.5.2 }
$$

$\mathrm{A}_{\text {Nc }} \quad$ see ACl 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)
$A_{\text {Nco }}=9 h_{\text {ef }}^{2}$
ACI 318-19 Eq. (17.6.2.1.4)
$\psi_{\mathrm{ec}, \mathrm{N}}=\left(\frac{1}{1+\frac{2 \mathrm{e}_{\mathrm{N}}^{\prime}}{3 \mathrm{~h}_{\mathrm{ef}}}}\right) \leq 1.0$
ACI 318-19 Eq. (17.6.2.3.1)
$\psi_{\text {ed, }, \mathrm{N}}=0.7+0.3\left(\frac{\mathrm{C}_{\mathrm{a}, \text { min }}}{1.5 \mathrm{~h}_{\mathrm{ef}}}\right) \leq 1.0 \quad \quad$ ACl 318-19 Eq. (17.6.2.4.1b)
$\psi_{c p, N}=\operatorname{MAX}\left(\frac{\mathrm{c}_{\mathrm{a}, \text { min }}}{\mathrm{C}_{\mathrm{ac}}}, \frac{1.5 \mathrm{~h}_{\mathrm{ef}}}{\mathrm{C}_{\mathrm{ac}}}\right) \leq 1.0 \quad \quad$ ACl 318-19 Eq. (17.6.2.6.1b)
$\mathrm{N}_{\mathrm{b}} \quad=\mathrm{k}_{\mathrm{c}} \lambda_{\mathrm{a}} \sqrt{\mathrm{f}_{\mathrm{c}}} \mathrm{h}_{\mathrm{ef}}^{1.5} \quad$ ACI 318-19 Eq. (17.6.2.2.1)

Variables

k_{cp}	$\mathrm{h}_{\mathrm{ef}}[$ in. $]$	$\mathrm{e}_{\mathrm{c} 1, \mathrm{~N}}[\mathrm{in}]$.	$\mathrm{e}_{\mathrm{c} 2, \mathrm{~N}}[\mathrm{in}]$.	$\mathrm{c}_{\mathrm{a}, \text { min }}[\mathrm{in}]$.
2	2.500	0.000	0.000	3.250

$\psi_{\mathrm{c}, \mathrm{N}}$	c_{ac} [in.]	k_{c}	λ_{a}	$\dot{\mathrm{f}}_{\mathrm{c}}[\mathrm{psi}]$
1.000	4.000	17	1.000	4,000

Calculations

$\mathrm{A}_{\mathrm{Nc}}\left[\mathrm{in} .{ }^{2}\right]$	$\mathrm{A}_{\mathrm{Nco}}\left[\mathrm{in}^{2}{ }^{2}\right]$	$\psi_{\text {ec } 1, \mathrm{~N}}$	$\psi_{\text {ecc,N}}$	$\psi_{\text {ed, } \mathrm{N}}$	$\psi_{\text {cp,N}}$	$\mathrm{N}_{\mathrm{b}}[\mathrm{lb}]$
110.25	56.25	1.000	1.000	0.960	1.000	4,250

Results

$\mathrm{V}_{\mathrm{cpq}}[\mathrm{lb}]$	$\phi_{\text {concrete }}$	$\phi \mathrm{V}_{\text {cpg }}[\mathrm{lb}]$	$\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$
15,994	0.700	11,196	323

Hilti PROFIS Engineering 3.0.90
www.hilti.com

Company:		Page:	7
Address:	Specifier:		
Phone I Fax:	I	E-Mail:	
Design:	Date:	$1 / 11 / 2024$	
Fastening point:			

4.3 Concrete edge failure in direction $\mathrm{y}+$

$$
V_{\mathrm{cbg}}=\left(\frac{\mathrm{A}_{\mathrm{Vc}}}{\mathrm{~A}_{\mathrm{Vc} 0}}\right) \psi_{e \mathrm{ec}, \mathrm{~V}} \psi_{\mathrm{ed}, \mathrm{~V}} \psi_{\mathrm{c}, \mathrm{~V}} \psi_{\mathrm{h}, \mathrm{~V}} \psi_{\text {parallel, },} V_{\mathrm{b}} \quad \text { ACl 318-19 Eq. (17.7.2.1b) }
$$

$$
\phi \mathrm{V}_{\mathrm{cbg}} \geq \mathrm{V}_{\mathrm{ua}}
$$

ACI 318-19 Table 17.5.2
$A_{V_{c}} \quad$ see $A C l$ 318-19, Section 17.7.2.1, Fig. R 17.7.2.1(b)

$$
\mathrm{A}_{\mathrm{Vc} 0}=4.5 \mathrm{c}_{\mathrm{a} 1}^{2}
$$

ACI 318-19 Eq. (17.7.2.1.3)
$\psi_{e c, V}=\left(\frac{1}{1+\frac{e_{v}^{\prime}}{1.5 c_{a 1}}}\right) \leq 1.0$
ACI 318-19 Eq. (17.7.2.3.1)
$\psi_{\text {ed }, V}=0.7+0.3\left(\frac{\mathrm{C}_{\mathrm{a} 2}}{1.5 \mathrm{c}_{\mathrm{a} 1}}\right) \leq 1.0 \quad \quad$ ACI 318-19 Eq. (17.7.2.4.1b)
$\psi_{\mathrm{h}, \mathrm{V}}=\sqrt{\frac{1.5 \mathrm{c}_{\mathrm{a} 1}}{\mathrm{~h}_{\mathrm{a}}}} \geq 1.0 \quad \quad$ ACI 318-19 Eq. (17.7.2.6.1)
$\mathrm{V}_{\mathrm{b}}=\left(7\left(\frac{\mathrm{l}_{\mathrm{e}}}{\mathrm{d}_{\mathrm{a}}}\right)^{0.2} \sqrt{\mathrm{~d}_{\mathrm{a}}}\right) \lambda_{\mathrm{a}} \sqrt{\mathrm{f}_{\mathrm{c}}} \mathrm{C}_{\mathrm{a} 1}^{1.5} \quad$ ACI 318-19 Eq. (17.7.2.2.1a)

Variables

$\mathrm{c}_{\mathrm{a} 1}$ [in.]	$\mathrm{c}_{\mathrm{a} 2}$ [in.]	e_{cV} [in.]	$\psi_{\mathrm{c}, \mathrm{V}}$	h_{a} [in.]
3.250	3.250	0.000	1.000	5.000
$\mathrm{I}_{\mathrm{e}}[\mathrm{in}]$.	λ_{a}	$\mathrm{d}_{\mathrm{a}}[\mathrm{in}]$.	$\mathrm{f}_{\mathrm{c}}^{\prime}[\mathrm{psi}]$	$\psi_{\text {paralle, }, \mathrm{V}}$
2.500	1.000	0.375	4,000	2.000

Calculations

$\mathrm{A}_{\mathrm{Vc}}\left[\mathrm{in}.{ }^{2}\right]$	$\mathrm{A}_{\mathrm{Vco}}\left[\right.$ in. $\left.{ }^{2}\right]$	$\psi_{\text {ec,V }}$	$\psi_{\text {ed,V }}$	$\psi_{\mathrm{h}, \mathrm{V}}$	$\mathrm{V}_{\mathrm{b}}[\mathrm{lb}]$
56.67	47.53	1.000	1.000	1.000	2,321

Results

$\mathrm{V}_{\text {cbg }}[\mathrm{lb}]$	$\phi_{\text {concrete }}$	$\phi \mathrm{V}_{\text {cbg }}[\mathrm{lb}]$	$\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$
5,536	0.700	3,875	323

5 Combined tension and shear loads, per ACI 318-19 section 17.8

β_{N}	β_{V}	ζ	Utilization $\beta_{\mathrm{N}, \mathrm{V}}[\%]$	Status
0.994	0.083	1.000	90	OK

$\beta_{\mathrm{NV}}=\left(\beta_{\mathrm{N}}+\beta_{\mathrm{V}}\right) / 1.2<=1$

Hilti PROFIS Engineering 3.0.90
www.hilti.com

Company:		Page:	8
Address:	Specifier:	8	
Phone I Fax:	A4- IBC KBTZ	E-Mail:	
Design:		Date:	$1 / 11 / 2024$
Fastening point:			

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Refer to the manufacturer's product literature for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions (MPII). Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

Hilti PROFIS Engineering $\mathbf{3 . 0 . 9 0}$
www.hilti.com

Company:		Page:	9
Address:	Specifier:		
Phone I Fax:	I	E-Mail:	
Design:	Date:	$1 / 11 / 2024$	

7 Installation data

Profile: no profile

Hole diameter in the fixture: $d_{f}=0.438$ in.
Plate thickness (input): 0.375 in.
Recommended plate thickness: not calculated
Drilling method: Hammer drilled
Cleaning: Manual cleaning of the drilled hole according to instructions for use is required.

Anchor type and diameter: Kwik Bolt TZ2 - SS 304 3/8 (2 1/2) hnom3

Item number: 2210245 KB-TZ2 3/8x5 SS304
Maximum installation torque: 361 in.lb
Hole diameter in the base material: 0.375 in.
Hole depth in the base material: 3.250 in.
Minimum thickness of the base material: 5.000 in.

Hilti KB-TZ2 stud anchor with 3 in embedment, 3/8 (2 1/2) hnom3, Stainless steel, installation per ESR-4266

7.1 Recommended accessories

Drilling	Cleaning	Setting
- Suitable Rotary Hammer	- Manual blow-out pump	- Torque controlled cordless impact tool
- Properly sized drill bit		- Torque wrench
		- Hammer

Coordinates Anchor [in.]

Anchor		\mathbf{y}	$\mathbf{c}_{-\mathbf{x}}$	$\mathbf{c}_{+\mathbf{x}}$	$\mathbf{c}_{-\mathbf{y}}$	$\mathbf{c}_{+\mathbf{y}}$
1	-1.750	-1.750	3.250	-	-	6.750
2	1.750	-1.750	6.750	-	-	6.750
3	-1.750	1.750	3.250	-	-	3.250
4	1.750	1.750	6.750	-	-	3.250

Hilti PROFIS Engineering 3.0.90
www.hilti.com

Company:		Page:	10
Address:	Specifier:	10	
Phone I Fax:	I	E-Mail:	
Design:	Date:	$1 / 11 / 2024$	
Fastening point:			

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

APPENDIX B: 3RD PARTY TESTING

(NOTE RICE ENGINEERING DID NOT PERFORM THE TESTING. THIS IS INCLUDED FOR REFERENCE PURPOSES ONLY AND IS NOT CONSIDERED PART OF THE SIGNED/SEALED SUBMITTAL.
ponsulting
天 Pestinginc.

Aluminum Post Strength Performance Test Report

Rendered To:
STAR Systems International, LLC.

Report No.:
QCT19-5620.01

Test Date(s):
November 22, 2019

Report Date:
December 11, 2019

Report Date:

ALUMINUM POST STRENGTH PERFORMANCE TEST REPORT

Rendered to:
STAR Systems International, LLC
7465 Conway Avenue
Burnaby, B.C. Canada, V5E 2P7

Report No.: QCT19-5620.01
Test Dates: 11/22/2019
Report Date: 11/25/2019
Test Report Retention Date: 11/22/2021

Project Summary:

Quast Consulting and Testing, Inc. was contracted by STAR Systems International, LLC to perform strength testing on aluminum posts. The posts were supplied by STAR Systems International, LLC. and tested at Quast Consulting and Testing Laboratory located in Mosinee, WI. Test specimen description and results are reported herein.

Test Specimen: (See Appendix A)

The aluminum mounting plate was 5 " x 5 " x $3 / 8$ " thick with four bolt holes spaced $3 / 4$ " from edges. A 2" tall $1-3 / 4$ " x $1-3 / 4^{\prime \prime}$ aluminum I-section with $1 / 4^{\prime \prime}$ web and $5 / 32$ " flanges was welded to the center of the mounting plate. A $2^{\prime \prime} \times 2$ x $1 / 8$ " thick aluminum post was fit over the I-Section and welded to the mounting plate on all sides. The post was bolted to a rigid steel W-section using 1/2-13 x 2-1/4" long A307 steel bolts.

Test Procedure: (See Photo \#1)

In order to facilitate loading, a steel collar was fitted over the post with its horizontal centerline positioned 42" from the bottom of the mounting plate. Load was applied to the collar horizontally and parallel to the web of the aluminum I-section insert. Load was measured using a load cell. Horizontal deflection at the point of load application was measured using a string potentiometer. A data acquisition program was used to generate load vs deflection data for each test. Peak load and pulling rate were tabulated as results. See Appendix B for Load vs Deflection graphs of all tests.

Photo \#1: Test Setup
Test Results: (See Appendix C for photos of failed posts)

Post \#	Peak Force (lbf)	Pulling Rate (in/min)	Failure Location
1	534	1.2	weld-post
2	521	0.8	weld-post
3	556	1.2	weld-post
4	583	0.7	weld-post and post
5	568	1.5	weld-post and throat
6	584	2.5	post
7	538	2.5	weld-post and post
8	573	2.3	weld-post and post
9	475	3.1	weld-post
10	480	2.3	weld-post and post
11	499	2.5	weld-post
12	489	2.7	throat
13	538	3.2	weld-post and throat
14	514	3.4	weld-post and throat
15	535	3.6	weld-post
Average	$\mathbf{3 7 . 6}$	2.2	
Standard Deviation			

Drawing Reference: The test specimen drawings have been reviewed by Quast Consulting and Testing, Inc. and are representative of the test specimen reported herein.

List of Official Observers:

Name:
Brian Sasman
Arlen Fisher
Norm Plumb
Paul Zen
Tony Dente

Company:
Quast Consulting and Testing, Inc.
Quast Consulting and Testing, Inc.
STAR Systems International, LLC.
East West Alum Craft Ltd
East West Alum Craft Ltd

Electronic records of data sheets, drawings, correspondence, this report, or other pertinent project documentation will be retained for a period of 10 years from the test completion date. Physical respresentative samples of the test specimen will be retained for a period of 2 years from the test completion date. At the end of this retention period, such material shall be discarded without notice and the service life of this report will expire.

Results obtained are tested values and were secured by using the designated test methods. This report does not constitute certification of this product nor an opinion or endorsement by this laboratory. It is the exclusive property of the client so named herein and relates only to the specimens tested. This report may not be reproduced, except in full, without the written approval of Quast Consulting and Testing, Inc.

QUAST CONSULTING \& TESTING, INC.
QUAST CONSULTING \& TESTING, INC.

Arlen Fisher, P.E.
Project Manager

Brian M. Sasman, P.E.
Reviewer

Attachments: This report is complete only when all attachments listed are included.
Appendix A: As-Built Drawings (1 Page)
Appendix B: Load vs Deflection Graphs (8 Pages)
Appendix C: Photos of Failed Posts (8 Pages)

Appendix B

Post \#2 Load vs Deflection

Post \#4 Load vs Deflection

Post \#11 Load vs Deflection

Post \#13 Load vs Deflection

> Appendix C
> (number printed on post is opposite of pulling direction)

