

01/24/2024

STAR System International Ltd. 7465 Conway Avenue Burnaby, BC V5E 2P7

Project: STAR System Aluminum Railing

To Whom It May Concern:

I would like to take this opportunity to introduce myself and our firm. My name is Joseph Bauer and I have fifteen years of experience in the design of railings. Our firm, Rice Engineering, is located northeast of Green Bay, Wisconsin, in the village of Luxemburg. Rice Engineering is licensed in all (50) U.S. States, Puerto Rico, Guam, and ten provinces of Canada. We have over 25 years of experience in the curtain wall and building envelope industry. Our fifty structural engineers and drafters provide structural calculations and shop drawings to installers and manufactures in the design of:

- Curtain walls, windows, storefront and blast design
- Composite and metal panel cladding
- Sunshades, canopies and awnings
- Louvers, fans, vents and hatches
- Stairs, platforms, mezzanines, railings and guardrails
- Glass walls, channel glass, glass stairs and floors
- Roof mounted equipment
- Florida product approvals and Miami Dade NOA's

Rice Engineering has more than 18 years of experience in railing engineering and anchorage design. Our Railing Engineering Group provides structural analysis and calculations for glass, aluminum, stainless steel, and steel railings with various infills and anchorage into all types of building structure. Each design considers live loads, wind loads, and infill loads based on IBC specifications and local building codes.

Our Midwest location allows us to provide our services at a competitive rate. We understand there are many options for engineering services. Therefore, we focus on working with our customers to provide cost effective solutions that meet their needs, in a timely manner. Our typical turn time is one to three weeks for engineering. If the project you are working on requires project specific calculations, please contact us and we can provide you with a quote.

Sincerely,

Jand Bun

Joseph Bauer, P.E. (FL, GA, ID, KY, MA, MI, NY, OK, WI) Manager – Railings Engineering Group

Cc: File

STAR System International Ltd. 7465 Conway Avenue Burnaby, BC V5E 2P7

RE: STAR System Aluminum Railing - IBC 2021

January 24, 2023

To whom it may concern:

Rice Engineering is pleased to submit this report and calculations which summarizes our analysis of the STAR Aluminum Railing System.

The calculations performed are for the STAR System "Classic Style" Picket Rail based on each members die drawing and assembly drawing which was provided to Rice Engineering previously by East & West Alum Craft. These drawings can be found at the end of the report.

Our conclusions for this report are based on design loads provided by the International Building Code 2021 (IBC 2021). The analysis provided meets the appropriate allowable stress design methods set forth by the Aluminum Association's "Aluminum Design Manual". The posts, post reinforcement, and base plates are designed solely by utilizing the test data as set forth per IBC 2021.

For the purposes of this report, a surface mount condition has been considered for two different substrate types: F'c= 4,000 psi normal weight cracked concrete and Southern Pine wood blocking (SG = 0.55 minimum). There is also an option for S-P-F wood blocking (SG = 0.42 minimum). The calculations are limited to the anchors embedment depth / penetration, spacing and edge distance dimensions as shown in the report. Also included are calculations for a surface core mounted condition. If the field conditions for the rail system installation are not as provided in this report, please contact East & West Alum Craft for custom anchorage design calculations. If using a core mounted condition, please contact the Engineer of Record on the project to verify concrete breakout is OK.

Since there are infinite layout possibilities for guardrails, the calculations provided with this report are limited to straight run guardrail systems with consideration for 1-span and 2+ span layouts. For guardrail layouts that include U-shapes, L-shapes or other custom layouts, please contact East & West Alum Craft for project specific guardrail calculations.

Conclusions for STAR System Commercial Guards:

- 1. It is assumed that the commercial guardrails are a maximum height of 42"
- Per the IBC 2021, a minimum design concentrated load of 200 LB applied in any direction at the top of the guard is required. Separately, a 50 PLF design uniform load in any direction is required at the top of the guard. Finally, a 50 LB lateral load applied over 1 ft² of the picket infill is required
- 3. Based on the above criteria from #2, the maximum post spacing for commercial applications for rail systems with 6061-T6 posts and 2" tall 6061-T6 I beam reinforcement are:

1-Span Guard (2 posts):	6'-5" maximum
2-Span or greater:	4'-0" maximum

4. See calculation sheets A4 through A6 for the appropriate standard concrete anchorage, wood anchorage and core mounted layout requirements for commercial applications.

Attachments:

The following sheets are the final calculations and STAR System layout and appropriate die drawings for the IBC 2021 analysis.

The structural calculations contained within this report are not intended to be submitted as project specific structural calculations. Rice Engineering assumes no liability for use of calculations. If project specific calculations are required, please contact Rice Engineering, 920-617-1042. The analysis within this report provides an acceptable engineered design for the STAR System to resist the specified loading, as well as the requirements outlined in IBC 2015.

If there are any questions regarding this submittal, please contact STAR System International Ltd..

Sincerely,

h Bun

Joséph Bauer

Star System - IBC 2021 Railing Calculations

Project Location: USA

REI Project # R23-08-261

Prepared for: STAR System International Ltd. - Burnaby, BC 01/24/2024

Design Criteria:

1. Railing live loads per **Building Code (IBC 2021)**:

Guardrails

50 plf uniform load in any direction on handrails and top rails of guards 200 pound concentrated load in any direction on handrails and top rails of guards 50 lb concentrated load over 1 ft² of infill area Concentrated load and uniform loads need not be assumed to act concurrently

- 2. Metal railing deflections per ICC-ES AC273 and IBC.
- 3. Aluminum members designed per AA, "Aluminum Design Manual".
- 4. Member sizes, grade, alloy and strengths shall be as recommended in the calculation package.
- 5. Stainless steel screws (ASTM A193) & bolts (ASTM F593) to be condition "CW", 300 Series, group 1 or 2, Fy= 65 ksi.
- 6. All other fasteners shall be the size and strength as is recommended in the calculation package.
- 7. Aluminum welds to be **5356 filler alloy unless otherwise noted.**
- 8. Concrete strength is assumed to be **F'c= 4,000 psi, normal weight, cracked.**
- 9. Cement or epoxy based grout shall be a minimum F'c= 6,000 psi, non-metallic, non-shrink.
- 10. Concrete anchors shall be as recommended in the calculation package. Installer is responsible for maintaining the fastener spacing, edge distance, end distance, embedment depth and minimum substrate thickness that is recommended in the calculation package.
- 11. Concrete anchors shall be installed per manufacturer's recommended installation procedures, including recommended ambient temperatures for chemical/adhesive anchors.
- 12. Concrete slabs and curbs, structural steel, masonry units, wood blocking, and all other anchorage substrates designed by others.
- 13. Shim dis-similar metals. Maximum recommended shim height for guardrails is 1/2", full bearing shims.
- 14. Design of material separation to prevent reaction between dissimilar materials not designed by Rice Engineering Inc.
- 15. Wood substrates are assumed to be Southern Pine or Equal, SG=0.55 minimum or S-P-F or Equal, SG = 0.42 minimum.
- 16. Any and all 3rd party testing is not part of this submittal and is included for reference purposes only.

Disclaimer:

This Certification is limited to the structural design of structural components of this handrail or divider system. It does NOT include responsibility for:

- Structural design of misc. hardware (latches, hinges, etc.).
- Structural design of concrete slabs and other masonry units
- Structural design of wood blocking or wood framing
- Structural design of all other anchorage substrates
- Glass breakage due to airborne debris or foreign objects
- The manufacture, assembly, or installation of the system.
- Quantities of materials or dimensional accuracy of drawings

The structural calculations contained within this report are not intended to be submitted as project specific structural calculations. Rice Engineering assumes no liability for use of calculations. If project specific calculations are required, please contact Rice Engineering, 920-617-1042. The analysis within this report provides an acceptable engineered design for the STAR Picket Rail System to resist the specified loading, as well as the requirements outlined in IBC 2021.

105 School Creek Trail | Luxemburg, WI 54217 (P) 920.617.1042 | (F) 920.617.1100

Project Location:

USA REI Project # R23-08-261

Prepared for: STAR System International Ltd. - Burnaby, BC 01/24/2024

Star System - IBC 2021

Railing Calculations

Page:	Description:	Date:	Revision:
IBC	IBC Analysis	1/10/24	
A1	Top Rail	1/10/24	
A2-A2A	Post Analysis	1/10/24	
A2.1	Post Analysis	1/10/24	
A3-A3.1	Picket Infill	1/10/24	
A4	Anchorage to Concrete	1/10/24	
A5	Anchorage to Wood	1/10/24	
A5A-A5C	A5A-A5C Lag Screws		
A5.1	Lag Screws		
A6	Anchorage to Grout	1/10/24	
S1-S2	Section Properties	1/10/24	
	System Drawings		
	Appendix A – Concrete		
	Anchor Data		
	Appendix B – 3 rd Party		
	Testing		
	(Not part of this		
	submittal)		

Disclaimer:

This Certification is limited to the structural design of structural components of this handrail or divider system. It does NOT include responsibility for:

- Structural design of misc. hardware (latches, hinges, etc.).
- Structural design of concrete slabs and other masonry units
- Structural design of wood blocking or wood framing
- Structural design of all other anchorage substrates
- Glass breakage due to airborne debris or foreign objects
- The manufacture, assembly, or installation of the system.
- Quantities of materials or dimensional accuracy of drawings

The structural calculations contained within this report are not intended to be submitted as project specific structural calculations. Rice Engineering assumes no liability for use of calculations. If project specific calculations are required, please contact Rice Engineering, 920-617-1042. The analysis within this report provides an acceptable engineered design for the STAR Picket Rail System to resist the specified loading, as well as the requirements outlined in IBC 2021.

Cover Page 2 of 2

IBC Apolyzia	Detail Ref.	Sheet No:	
IBC Analysis		IBC	

International Building Code 2021 Analysis

50 plf uniform load in any direction on top rail

200# concentrated load in any direction on top rail

50# concentrated load applied to 1 square foot of infill

RICE		105 School Creek Trail	Project Description:	Job No:		R23-08-261	
		Luxemburg, WI 54217 Phone: (920) 617-1042		Engineer:	JDB	Sheet No:	IBC
EN	GINEERING	Fax: (920) 617-1100	Star System - IBC 2021	Date:	1/10/2024	Rev:	
Template:	REI-MC-5700	www.rice-inc.com		Chk By:		Date:	

Extruded Railing and Post

Input Variables:

IBC Rail Analysis (1-Span)

Calculations:

Template:

REI-MC-5719

		All Calculations Delow 11	IS LINE ALE AULOINA		
Railing Properties	Channel Properties				
$I_{X\Gamma} = 0.320$ in ⁴	$I_{xch} = 0.009$ in ⁴				
$I_{yr} = 0.500$ in ⁴	$I_{ych} = 0.054$ in 4				
$S_{X\Gamma} = 0.260$ in 3	$S_{xch} = 0.017$ in 3				
$S_{Vr} = 0.350$ in 3	S _{ych} = 0.078 in ³		Computational Fac	ctors	
$J_r = 0.400$ in ⁴	$J_{ch} = 0.001$ in ⁴		$K_1 := (8 \cdot q_1) + (8 \cdot q_2)$) + (9.5·q3)	K ₁ = 8
E _r = 10100000 psi	E _{ch} = 10100000 psi	i	$K_2 := (4 \cdot q1) + (5 \cdot q2)$) + (5·q3)	$K_{2}=4$
$d_{r} = 2.50$ in	d _{ch} = 1.38 in		$K_3 := (48 \cdot q1) + (66 \cdot q)$	q2) + (87·q3)	$K_{3}=48$
	= 0.329 in ⁴				
lytotr := lyr + lych lytotr	= 0.554 in ⁴				
DICE 105 School Creek Trail		roject Description:	Job No:	R23-08-261	
RICE	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer: JDB	Sheet No:	A1
Fax: (920)845-1048		Star System - IBC 2021	Date: 1/10/2024	Rev:	
Template: RELMC_5710	www.rice-inc.com		Chk By:	Date:	

2¹" RT-100 RT-101

2 1/2" x 2" Top Rail RT-100/101

All Calculations Below This Line Are Automatic

Chk By:

Date:

Railing Analysis: $L_{br} := L - 2$ $W_h := \frac{F_H}{12}$ $W_V := \frac{F_V}{12}$	IBC Rail Analysis (1-S	pan) Detail Ref. Sheet No: A1 A
Case 1 Uniform Load:		
$\Delta_{yr1} \coloneqq \frac{5 \cdot W_h \cdot L^4}{384 \cdot E_r \cdot I_{ytotr}}$	$\Delta_{yr1} = 0.341$ in Modeled a	is a simple span
$\Delta_{xr1} \coloneqq \frac{5 \cdot W_{v} \cdot L^{4}}{384 \cdot E_{r} \cdot I_{xtotr}}$	$\Delta_{X\Gamma1} = 0.57$ in	
$\Delta_{allr} \coloneqq \frac{L}{96}$	$\Delta_{allr} = 0.8$ in Per ASTN	1 Specification E98 5/ICCAC 273
$M_{yrmax} := \frac{W_{h} \cdot L^2}{K_1}$	M _{yrmax} = 3088 in Ib	
$M_{xrmax} := \frac{W_{v} L^2}{K_1}$	M _{xrmax} = 3088 in Ib	
$r_{yr} := \frac{1}{1.7} \cdot \sqrt{\frac{I_{xr} \cdot d_r}{S_{yr}}} \left[5 + \sqrt{1.25 + .152 \cdot \frac{J_r}{I_{xr}} \cdot \left(\frac{L_{br}}{d_r}\right)^2} \right]$	$T6_{r} = 1 \qquad Sc_{r} = 1$ $T5_{r} = 0 \qquad So_{r} = 0$	$RO1 := \frac{L_{br}}{\sqrt{r_{yr}}}$ $S_{RC1} := \frac{2 \cdot L_{br} \cdot S_{yr}}{\sqrt{I_{xr} \cdot J_r}}$
$f_{bry1} \coloneqq \frac{M_{yrmax} \cdot I_{yr}}{S_{yr} \cdot I_{ytotr}}$ $f_{brx1} \coloneqq \frac{M_{xrmax} \cdot I_{xr}}{S_{xr} \cdot I_{xtotr}}$		y1 = 7963 psi _{x1} = 11552 psi
F _{brx} := 12500·T5 _r + 19500T6 _r		
Case 2 - Point Load:	$M_{\text{prmax}} := \frac{P \cdot L}{K_2} \qquad M_{\text{prmax}}$	ormax = 3850 in·lb
$\Delta_{yr2} \coloneqq \frac{P \cdot L^3}{K_3 \cdot E_r \cdot I_{ytotr}} \qquad \Delta_{yr2} = 0.34 \qquad \text{ in }$	$f_{bry2} \coloneqq \frac{M_{prmax} \cdot I_{yr}}{S_{yr} \cdot I_{ytotr}} \qquad \qquad f_{br}$	y2 = 9928 psi
$\Delta_{Xr2} \coloneqq \frac{P \cdot L^3}{K_3 \cdot E_r \cdot I_{Xtotr}} \qquad \Delta_{Xr2} = 0.572 \qquad \text{in}$	$f_{brx2} \coloneqq \frac{M_{prmax} \cdot I_{xr}}{S_{xr} \cdot I_{xtotr}} \qquad f_{br}$	_{x2} = 14403 psi

F_{bry} = 19500 psi

Calculation Results:

REI-MC-5719

Template:

$Int_{r1} := max \left[\left(\frac{f_{brx1}}{F_{brx}} \right) + \left(\frac{f_{bry1}}{F_{bry}} \right) \right]$	$\left] \cdot S, \max\left(\frac{fbry1}{Fbry}, \frac{fbrx1}{Fbrx}\right) \right.$	Int _{r1} = 0.59				
$Int_{f2} \coloneqq max\!\left(\!\frac{fbry2}{Fbry},\frac{fbrx2}{Fbrx}\right)$		$Int_{r2} = 0.74$				
RAILS := $ "OK" \text{ if } \frac{\max(\Delta_{yr1})}{ "FAIL" \text{ otherwise}}$	$\frac{,\Delta_{xr1},\Delta_{yr2},\Delta_{xr2})}{\Delta_{allr}} \leq 1$	\land Int _{r1} \leq 1 \land Int _{r2} \leq 1	RAILS = "C	OK"		
DICE	105 School Creek Trail	Project Description:	Job No:		R23-08-261	
RICE	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	A1 A
ENGINEERING	Fax: (920)845-1042	Star System - IBC 2021	Date:	1/10/2024	Rev:	

Fax: (920)845-1048 www.rice-inc.com

F_{brx} = 19500 psi

Chk By:

Date:

Inputs:

b := 2	in	
t := 0.125	in	
d := 2	in	
L := 48	in	PostTributaryWidth
h := 42	in	Railing Height
L _b := 3	in	Bottom Rail Height
L _W := 2	in	Max Bottom Rail Weld Length

Railing Loading:

W _h := 50	plf	Horizontal Uniform Load
W _V := 0	plf	Simultaneous Verfical Load
P := 200	lb	Concentrated Load

<u>Use 2" x 2" x 1/8" Wall Tube</u> (6061-T6 or better) with reinforcement as shown below

Calculations:

Ep :=	10000000	if M1 < 7	= 1000000	
	29000000	otherwise	= 10000000	
w _h := -	$\frac{W_{h}}{12} = 4.17$	pli	$w_V := \frac{W_V}{12} = 0$	pli

2" Min. Length - I Stub Properties - 6061-T6

I _{st} := 0.347	in ⁴	L _{st} := 2	in
S _{st} := 0.401	in ³	E _{st} := 1000000	psi
F _{bst} = 9091	psi		

Note: Separate Dissimilar Metals

$\Delta_{Xp1} := \frac{w_h \cdot L \cdot \left(h - L_{st}\right)^3}{3 \cdot E_p \cdot I_X} = 0.77 \qquad \text{in}$
$\Delta_{\textbf{X}\textbf{P2}} \coloneqq \frac{\textbf{P} \cdot \textbf{0.85} \cdot \left(\textbf{h} - \textbf{L}_{\textbf{st}}\right)^{\textbf{3}}}{\textbf{3} \cdot \textbf{E}_{\textbf{p}} \cdot \textbf{I}_{\textbf{X}}} = \textbf{0.66} \text{ in }$
$\Delta_{tot} := \frac{w_h \cdot L \cdot \left(h - L_{st}\right)^3}{3 \cdot E_p \cdot I_X} + \frac{w_h \cdot L \cdot \left[h - \left(h - L_{st}\right)\right]^3}{3 \cdot \left[\left(E_p \cdot I_X\right) + \left(E_{st} \cdot I_{st}\right)\right]} = 0.77$
$\Delta_{\text{allp}} := \frac{2 \cdot h}{60} = 1.4$ in Per IBC

	P	ost Analy	sis	Det	ail Ref.	Sheet A2	
Post	Material:						
6	061-T6 Alu	minum 🗸	·	•	:= b – 2t = := d – 2t =		
Post	Properties:				b1		
А	:= b·d – b1·d1	= 0.938	in ²		-		
١ _x	:= 0.0833 (b·c	$d^3 - b_1 \cdot d_1^3$	$= 0.552 \text{ in}^3$				
S,	$\mathbf{g} := \left(\mathbf{b} \cdot \mathbf{d}^3 - \mathbf{b} \cdot \mathbf{d}^3\right)$	$(6d)^{-1}$	$^{1} = 0.55 \text{ in}^{3}$	7			_ ح
Z _x	$c := 0.25 \cdot b \cdot d^2$	-0.25b1.d1 ²	$= 0.66 \text{ in}^{3}$		t		
J :	$= 2 \cdot t \cdot b^2 \cdot d^2 \cdot (b)$	$(+ d)^{-1} = 1.0$	000		-		_
Post	Constructior	ז:		-	∎ b		
•	Welded wit	hin 1" of Maximu	ım Moment	I		I	
	Bottom rail	welded to post					
	All Calcu	lations Below T	his Line Are Au	tomatic			
Al	lowable Stre	ss Coefficie	<u>nts:</u>		Materia	l Prope	rties:
X1 = 10.2	X5 = 10.2	X9 = 9.1	X13 = 58	X17 = 16	F _{ty} =	15000	psi
X2 = 0.08	X6 = 0.08	X10 = 28.2	X14 = 346	X18 = 0.07	7 F _{cy} =	= 15000	psi
X3 = 6943	X7 = 6943	X11 = 12	X15 = 11.8	X19 = 123	F _{tu} =	= 24000	psi
X4 = 23599	X8 = 23599	X12 = 0.11	X16 = 64.2	X20 = 982	Ftyw	= 15000	psi

$$S_{r} := \begin{array}{c} 2 \cdot L_{b} \cdot S_{X} \\ \hline C_{b} \sqrt{I_{y} \cdot J} \end{array} = 2.67 \qquad \begin{array}{c} F_{cyw} = 15000 \\ F_{tuw} = 24000 \\ F_{ySTL} = 0 \end{array} \begin{array}{c} psi \\ F_{ySTL} = 0 \end{array}$$

$$\begin{array}{lll} [F.3.1] & F_{bAL} := & \left\lfloor \left(X1 - X2 \sqrt{S_{f}} \right) \cdot 1000 \right] & \text{if } S_{f} \leq X3 & = 10066 & \text{psi} \\ & \left\lfloor \frac{X4}{S_{f}} & \text{otherwise} \\ \end{array} \right. \\ [F.8.1.2] & F_{bAL2} := & \min \left(\min \left(\frac{F_{ty}}{1.65}, \frac{F_{tu}}{1.95} \right), \min \left(\frac{1.30 \cdot F_{ty}}{1.65}, \frac{1.42 \cdot F_{tu}}{1.95} \right) \right) = 9091 & \text{psi} \\ [F.8.2.1] & S_{rf} := & b_{1} \cdot t^{-1} = 14 \\ \end{array}$$

$$[F.8.2.2] \quad S_{TW} := d_1 \cdot t^{-1} = 14$$

$$[B.5.5.1] \quad F_{bAL4} := \begin{vmatrix} X15 \cdot 1000 & \text{if } S_{TW} < X16 \\ \text{otherwise} \\ | (X17 - X18 \cdot S_{TW}) \cdot 1000 & \text{if } S_{rf} \le X19 \\ \frac{X20}{S_{TW}} \cdot 1000 & \text{otherwise} \end{vmatrix}$$

$$F_{bSTL} := \frac{F_{ySTL}}{1.67} = 0 \qquad \text{psi}$$

 $F_{b} := max(min(F_{bAL}, F_{bAL2}, F_{bAL3}, F_{bAL4}), F_{bSTL}) = 9091$ psi

RICE 105 School Creek Trail		Project Description:	Job No:		R23-08-261		
		Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	A2
E	NGINEERING	Fax: (920)845-1048	Star System - IBC 2021	Date:	1/10/2024	Rev:	
Template:	REI-MC-5714A	www.rice-inc.com		Chk By:		Date:	

in

Oraca di Uniforma Landa	Post Analysis	Detail Re	f. Sheet No: A2 A
Case 1 - Uniform Load:			- A2 A
$M_{xpmax} := (w_{h} \cdot L \cdot h) + w_{V} \cdot L \cdot \Delta_{tot}$	M _{xpmax} = 8400	lb∙in	
$M_{xpmax2} \coloneqq w_h \cdot L \cdot (h - L_{st}) + w_V \cdot L \cdot \Delta_{xp1}$	M _{xpmax2} = 8000	lb∙in	
Case 2 - Point Load:			
$M_{xpmax3} \coloneqq (P \cdot h \cdot 0.85)$	M _{xpmax3} = 7140	lb∙in	
$M_{xpmax4} \coloneqq P \cdot (h - L_{st}) \cdot 0.85$	$M_{xpmax4} = 6800$	lb∙in	
Max Post Stress A bove Reinforcement:			
$f_{bpx} \coloneqq \left[\begin{array}{c} \displaystyle \frac{max \left(M_{xpmax2}, M_{xpmax4} \right)}{Z_{x}} & \mbox{if} M1 \geq 7 \\ \\ \displaystyle \frac{max \left(M_{xpmax2}, M_{xpmax4} \right)}{S_{x}} & \mbox{otherwise} \end{array} \right]$	f _{bpx} = 14499	psi	
$\frac{max(M_{xpmax2},M_{xpmax4})}{S_{x}} \text{ otherwise }$	F _{bpx} = 19500	psi	
Max Post/Stub Combined Stress @ Bottom Rail Weld: (Run Reinforcement Past Bottom Rail)			
$h_{br} := h - L_b$	h _{br} = 39	in	
$M_{b1} := w_{h} \cdot L \cdot h_{br} + w_{V} \cdot L \cdot \frac{w_{h} \cdot L \cdot h_{br}^{3}}{3 \cdot E_{p} \cdot I_{X}}$	M _{b1} = 7800	in∙lb	
$M_{b2} := P \cdot 0.85 \cdot h_{br}$	$M_{b2} = 6630$	in·lb	
$f_{bbr} \coloneqq max \Big(M_{b1}, M_{b2} \Big) \cdot \frac{I_{x} \cdot E_{p}}{\big(I_{x} \cdot E_{p} + I_{st} \cdot E_{st} \big) \cdot S_{x}}$	f _{bbr} = 8677	psi	
$F_{bw} := \min\left(\frac{F_{tyw}}{1.65}, \frac{F_{tuw}}{1.95}\right)$	F _{bw} = 9091	psi	
$A_{\mathbf{W}} := (L_{\mathbf{W}} + 2) \cdot (2) \cdot t \cdot C2$	A _W = 1.000	in ²	
$F_{bbr} \coloneqq max \left[F_{bSTL}, max \left[F_{bpx} - \frac{A_{W}}{A} \cdot \left(F_{bpx} - F_{bw} \right), F_{bw} \right] \right]$	F _{bbr} = 9091	psi	
Max Post/Stub Combined Stress:			
$f_{bpx2} := max(M_{xpmax}, M_{xpmax3}) \cdot \frac{I_x \cdot E_p}{(I_x \cdot E_p + I_{st} \cdot E_{st}) \cdot Z_x} \text{if} M1 \geq 7$	f _{bpx2} = 9345	psi	
$max(M_{xpmax}, M_{xpmax3}) \cdot \frac{I_x \cdot E_p}{(I_x \cdot E_p + I_{st} \cdot E_{st}) \cdot S_x} \text{otherwise}$	$F_{b} = 9091$	' c	% Over 0K Per Testing 6ee Sheet A2.1
Max Stub Stress:			
$f_{\text{bst}} := \text{max} \Big(M_{\text{xpmax}}, M_{\text{xpmax3}} \Big) \cdot \frac{I_{\text{st}} \cdot E_{\text{st}}}{\left(I_{\text{x}} \cdot E_{\text{p}} + I_{\text{st}} \cdot E_{\text{st}} \right) \cdot S_{\text{st}}}$	f _{bst} = 8090	psi	
Calculation Results:	F _{bst} = 9091	psi	
Int the max fbpx fbpx2 fbst fbbr	Reactions for A	nchorage	<u>e (ASD):</u>
$Int_{p1} := max \left(\frac{f_{bpx}}{F_{bpx}}, \frac{f_{bpx2}}{F_{b} \cdot 1.03}, \frac{f_{bst}}{F_{bst}}, \frac{f_{bbr}}{F_{bbr}} \right) \qquad Int_{p1} = 1$	R : max(P.0.85	w. () - 200) lb

	(F _{bpx} F _b ·1.03	Fbst Fbbr /			R := max(F		,	o ·	
$\text{POSTS} \coloneqq \text{"OK"} \text{if } \text{Int}_{p1} \leq 1 \ \land \ \frac{\text{max} \left(\Delta_{xp1}, \Delta_{xp2}, \Delta_{tot} \right)}{\Delta_{allp}} \leq 1$				M := max(M M _p = 5156		xpmax3) = 8400	0 in·lb		
	"FAIL" otherwise	e		POSTS = "OK"	M _{st} = 3244	l in·lb			
RICE		105 School Creek Trail Luxemburg, WI 54217	Project Descriptic	on:	Job No: Engineer:	JDB	R23-08-261 Sheet No:	A2 A	

RICE		105 School Creek Trail	Project Description:	Job No:		R23-08-261	
		Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	A2 A
Ŀ	ENGINEERING	Fax: (920)845-1048	Star System - IBC 2021	Date:	1/10/2024	Rev:	
Template:	REI-MC-5714A	www.rice-inc.com		Chk By:		Date:	

Calculations:

All Calculations Below This Line Are Automatic

 $C_n := \frac{n^2 - 1}{n^2 - 3n} = 1.24 \qquad \text{ correction factor}$

$$R_{tm} := mean(a) = 534.93$$

mean strength of all tests

coefficient of variation of the ratio of the observed failure loads divided by the average value of all observed failure loads

 $V_Q := 0.21 \qquad \qquad \text{coefficient of variation of the loads}$

$$\Omega := max \left[\left[\frac{1.05\alpha + 1}{M_{m} \cdot F_{m} \cdot (\alpha + 1)} \right] \cdot e^{\beta_{0} \cdot \sqrt{V_{M}^{2} + V_{F}^{2} + C_{n} \cdot V_{P}^{2} + V_{Q}^{2}}, 1.95 \right] = 2.65$$

Safety Factor

Allowable2 :=
$$\frac{R_{tm}}{\Omega}$$
 = 202 lb

RICE		105 School Creek Trail	Project Description:	Job No:		R23-08-261	
		Luxemburg, WI 54217 Phone: (920) 617-1042		Engineer:	JDB	Sheet No:	A2.1
ENC	GINEERING	Fax: (920) 617-1100	Star System - IBC 2018	Date:	1/10/2024	Rev:	
Template:	REI-MC-1090	www.rice-inc.com		Chk By:		Date:	

 $\mathsf{A} := \frac{\mathsf{L} - \mathsf{B}}{2} \qquad \mathsf{C} := \mathsf{A}$

Picket Inf		Detail Ref.	Sheet No:	
FICKEL IIII				A3
Picket Dimer	nsiol	<u>15:</u>		
b := 0.625	in	(Picket Size)	✓	6063 - T5
d := b				6063 - T6
t := 0.05	in	(Wall thickne	ss)	6005-T5 or
L := 37.5	in	(Picket Leng	h)	6005A-T61
L _r := 75	in	(Rail Length)		6061 - T6
Load := 50	psfo	over 1 ft ²		
Trib := 4.5	in	(Picket Spac	ing - o.c.)	

all calculations below this line are automatic

Check Pickets:

B := 12	in
A = 12.75	in

C = 12.75 in

- $$\begin{split} w &\coloneqq \frac{Load \cdot Trib}{144} & w = 1.56 \quad \text{pli} \\ \Delta_{act} &\coloneqq \frac{(w \cdot B) \cdot L^3}{48 \cdot E \cdot I_X} & \Delta_{act} = 0.319 \quad \text{in} \\ \Delta_{all} &\coloneqq \frac{L}{60} & \Delta_{all} = 0.625 \quad \text{in} \end{split}$$
- $R1 := \frac{w \cdot B}{2 \cdot L} \cdot (2C + B) \qquad \qquad R1 = 9.4 \qquad Ib$

$$\begin{split} M &:= \ R1 \cdot \left(A \ + \ \frac{R1}{2w}\right) & M = 147.7 & \text{Ib} \cdot \text{in} \\ S_{\Gamma} &:= \ \frac{2 \cdot L \, S_X}{\sqrt{J \cdot I_X}} & S_{\Gamma} = 196.7 \end{split}$$

$$f_{bx} := \frac{M}{S_x}$$

<u>Use 5/8" x 5/8" x 0.050" Wall Picket</u> (6063-T5 or better)

PICKET = "OK"

$d_1 \coloneqq d-2t$	b ₁ := b - 2t	E := 10.1.10 ⁶	j psi
$I_X := \frac{\left(b \cdot d^3\right)}{a}$	$\frac{-\left(b_{1}\cdot d_{1}^{3}\right)}{12}$	I _X = 0.01	4 in
$S_X := \frac{(b \cdot d^3)}{d}$	$\frac{-\left(b_1 \cdot d_1^3\right)}{6d}$	$S_{X} = 0.02$	3 in
$J := \frac{4 \cdot (b - t)^2}{4 \cdot (b - t)^2}$	⁴ .t)	J = 0.01	in ⁴
<u>Check Intern</u>	nediate or B	ottom Rails:	
Input: I _{x1}	$:= 0.04 \text{ in}^4$		
I _{x2}	:= 0.03 in ⁴	Sy2 := 0.04	in ³
$w_1 := \frac{\text{Load}}{12}$		$w_1 = 4.17$	lb in
b ₁₀ := 12 = 1	2 in		
$a \coloneqq \frac{L_{r} - b_{10}}{(2)}$	= 31.5 in		
c := a = 31.5	in		
$M_2 := \frac{w_1 \cdot b_1 c_1}{8 \cdot L_r^2}$	$(2 \cdot c + b_{10})$	4∙a∙Lr + b10∙(2c	+ b10)]
$f_{b2} := \frac{M_2}{S_{y2} \cdot (I_y)}$	$\frac{2 \cdot I_{x1}}{(1 + I_{x2})}$	$f_{b2} = 12321$	psi
$\Delta_{r} := \frac{Loa}{48\cdotE\cdot(I)}$	$\frac{d \cdot L_r^3}{x1 + I_{x2}} = 0.6$	2 in $\Delta_{rall} :=$	$\frac{L_r}{120} = 0.63$ in
RAIL := "OK	a" if <u>fb2</u> ≤	$\leq 1 \wedge \frac{\Delta_r}{\Delta_{rall}} \leq 1$	

"FAIL" otherwise

RAIL = "OK"

Use Bottom Rail, As Shown	
(6005-T5 or 6005A-T61)	

RICE		105 School Creek Trail	Project Description:	Job No:		R23-08-261	
		Luxemburg, WI 54217 Phone: (920) 617-1042		Engineer:	JDB	Sheet No:	A3
EN	GINEERING	Fax: (920) 617-1100	Star System - IBC 2021	Date:	1/10/2024	Rev:	
Template:	REI-MC-5740	www.rice-inc.com		Chk By:		Date:	

 $A := \frac{L-B}{2} \qquad C := A$

Picket Int	Fill	Detail Ref.	Sheet No:	
FICKELIII	111			A3.1
<u>Picket Dimer</u>	nsiol	<u>ns:</u>		
b := 0.625	in	(Picket Size)	✓	6063-T5
d := b				6063 - T6
t := 0.05	in	(Wall thickne	ess)	6005-T5 or
L := 37.5	in	(Picket Leng	th)	6005A-T61
L _r := 75	in	(Rail Length)		6061 - T6
Load := 50	psfo	over 1 ft ²		
Trib := 3.94	in	(Picket Spac	ing-o.c.)	

 $d_1 := d - 2t$ $b_1 := b - 2t$ $E := 10.1 \cdot 10^6$ psi

all calculations below this line are automatic

Check Pickets:

B := 12	in
A = 12.75	in
C = 12.75	in

$$w := \frac{\text{Load} \cdot \text{Trib}}{144} \qquad w = 1.37 \qquad \text{pli}$$

$$\Delta_{\text{act}} := \frac{(w \cdot B) \cdot L^3}{48 \cdot E \cdot I_X} \qquad \Delta_{\text{act}} = 0.28 \quad \text{in}$$

$$\Delta_{\text{all}} := \frac{L}{60} \qquad \Delta_{\text{all}} = 0.625 \quad \text{in}$$

$$R1 := \frac{w \cdot B}{2 \cdot L} \cdot (2C + B) \qquad \qquad R1 = 8.2 \qquad lb$$

$$\begin{split} \mathsf{M} &\coloneqq \mathsf{R}1 \cdot \left(\mathsf{A} + \frac{\mathsf{R}1}{2\mathsf{w}}\right) & \mathsf{M} &= 129.3 \qquad \mathsf{lb} \cdot \mathsf{in} \\ \mathsf{S}_{\Gamma} &\coloneqq \frac{2 \cdot \mathsf{L}\,\mathsf{S}_{X}}{\sqrt{\mathsf{J} \cdot \mathsf{I}_{X}}} & \mathsf{S}_{\Gamma} &= 196.7 \end{split}$$

$$f_{bx} := \frac{M}{s_x}$$

<u>Use 5/8" x 5/8" x 0.050" Wall Picket</u> (6063-T5 or better)

 $\mathsf{PICKET} = \mathsf{"OK"}$

1. 1.		
$I_{X} := \frac{\left(b \cdot d^{3}\right) - \left(b_{1} \cdot d_{1}^{3}\right)}{12}$	I _X = 0.01	4 in
$S_{X} := \frac{\left(b \cdot d^{3}\right) - \left(b_{1} \cdot d_{1}^{3}\right)}{6d}$	$S_{\boldsymbol{X}}=0.02$	in ³
$J \coloneqq \frac{4 \cdot (b - t)^4 \cdot t}{4 \cdot (b - t)}$	J = 0.01	u4 in
Check Intermediate or Bo	ttom Rails:	
<i>Input:</i> I _{x1} := 0.04 in ⁴		
$I_{x2} := 0.03$ in ⁴	$S_{y2} := 0.04$	in ³
$w_1 := \frac{\text{Load}}{12}$	w ₁ = 4.17	$\frac{lb}{ln}$
$b_{10} := 12 = 12$ in		
$a := \frac{L_r - b_{10}}{(2)} = 31.5$ in		
c := a = 31.5 in		
$M_2 := \frac{w_1 \cdot b_{10}}{8 \cdot L_r^2} \cdot \left(2 \cdot c + b_{10}\right) \left[4 \cdot c_1 + b_{10}\right] \left[4 \cdot c_2 + b_{$	a·L _r + b ₁₀ .(20	c + b10)]

$$f_{b2} := \frac{M_2 \cdot I_{x1}}{S_{y2} \cdot (I_{x1} + I_{x2})} \qquad \qquad f_{b2} = 12321 \text{ psi}$$

$$\Delta_{\Gamma} := \frac{\text{Load} \cdot \text{L}_{\Gamma}^{3}}{48 \cdot \text{E} \cdot \left(\text{I}_{X1} + \text{I}_{X2}\right)} = 0.62 \text{ in } \Delta_{\text{rall}} := \frac{\text{L}_{\Gamma}}{120} = 0.63 \text{ in }$$

$$\label{eq:RAIL} \mbox{RAIL} := \begin{tabular}{c} "OK" & \mbox{if} & \end{tabular} \frac{f_{b2}}{19500} \leq 1 \ \land \end{tabular} \frac{\Delta_r}{\Delta_{rall}} \leq 1 \ \end{tabular} \\ \end{tabular} \mbox{"FAIL"} & \mbox{otherwise} \end{tabular}$$

RAIL = "OK"

<u>Use Bottom Rail, As Shown</u>	
(6005-T5 or 6005A-T61)	

RICE 105 School Creek Tra		Project Description:	Job No:		R23-08-261		
		Luxemburg, WI 54217 Phone: (920) 617-1042		Engineer:	JDB	Sheet No:	A3.1
EN	GINEERING	Fax: (920) 617-1100	Star System - IBC 2021	Date:	1/10/2024	Rev:	
Template:	REI-MC-5740	www.rice-inc.com		Chk By:		Date:	

Embedment: 3" Min. Edge Distance: 3-1/4" 2nd Edge Distance: 3-1/4" Spacing: 3-1/2" Min. Slab Thickness: 5" Concrete Strength: fc= 4,000 psi, Normal Wt., Cracked

Install per Manufacturer's instructions

RICE		105 School Creek Trail	Project Description:	Job No:		R23-08-261	
		Luxemburg, WI 54217 Phone: (920) 617-1042		Engineer:	JDB	Sheet No:	A4
EN	GINEERING	Fax: (920) 617-1100	Star System - IBC 2021	Date:	1/10/2024	Rev:	
Template:	REI-MC-5780	www.rice-inc.com		Chk By:		Date:	

Chk Anchor Bolts:

$V_b := \frac{R_{max}}{2}$	$V_b = 101$	lb
$T_{b} := \frac{M_{max}}{4.25 \cdot 0.85 \cdot 2}$	T _b = 1172	lb

Sheet A5A for Dry Conditions - Southern Pine

Use (4) 3/8" Dia. SS Lag Screws 300 Series Stainless Steel

Penetration: 3" Min. Thread Engagement: 2-9/16" min. Edge Distance: 1-1/2" End Distance: 2-5/8" Spacing: as shown Assume S.G. = 0.55 (So. Pine)

Install per NDS Guidelines Wood Blocking Designed By Others Moisture Content < 19%

RICE **ENGINEERING** Template: **REI-MC-5780**

105 5 Luxe Phon Fax wv

Detail Ref. Sheet No: IBC Anchorage to Wood A5

$R_{max} \coloneqq 202$	lb	b := 2	in (post width)
M _{max} := 8467	in∙lb	d := 2	in (post depth)

Chk Post Weld to Base Plate:

Use 3/16" fillet weld all around
5356 filler alloy
OK Per Testing

Chk I-Beam Weld to Base Plate:

Use 3/16" Fillet Welds 5356 filler alloy - All Around - Inside of I-Beam OK Per Testing

Chk Base Plate:

<u>Use 3/8" x 5" x 5" Plate</u> 6061-T6 alloy OK Per Testing

see Sheet A5B for Wet Conditions - Southern Pine

Use (4) 3/8" Dia. SS Lag Screws 300 Series Stainless Steel Penetration: 4-1/4" Min. Thread Engagement: 3-3/16" min. Edge Distance: 1-1/2" End Distance: 2-5/8" Spacing: as shown Assume S.G. = 0.55 (So. Pine)

Install per NDS Guidelines Wood Blocking Designed By Others Moisture Content > or = to 19%

Sheet A5C for Dry Conditions - SPF

Use (4) 3/8" Dia. SS Lag Screws 300 Series Stainless Steel

Penetration: 4-5/16" Min. Thread Engagement: 3-1/4" min. Edge Distance: 1-1/2" End Distance: 2-5/8" Spacing: as shown Assume S.G. = 0.42 (S-P-F)

> **Install per NDS Guidelines** Wood Blocking Designed By Others Moisture Content < 19%

School Creek Trail	Project Description:	Job No:		R23-08-261	
mburg, WI 54217 e: (920) 617-1042		Engineer:	JDB	Sheet No:	A5
: (920) 617-1100	Star System - IBC 2021	Date:	1/10/2024	Rev:	
ww.rice-inc.com		Chk By:		Date:	

Dowel Type Fastener Capacity

<u>Dowel Type Fastener Capacity</u>		Lag Screws		Detail Ref.	Sheet No:
V _{pos} := 101 ·lbf	V _{neg} := 101.lbf	Eug Colonie			A5A
	J	Mixed Maple	e Souther	rn Pine	-
T _{pos} := 1172 ·lbf	$T_{neg} := 1172 \cdot lbf$	p := 3	penetra	ation, in	
3/8 in Lag Sc	row 89	t _{shim} := 0.75	thickne	ess of shim, in	
3/8 III Lay 30		C _D := 1.6	load du	uration factor, 10.3.2	
I _m := 4.5	thickness of main member, in	C _M := 1.0	wetser	vice factor, 103.3	
l _S := 0.375	thickness of side member, in	C _t := 1.0	temper	rature factor, 10.3.4	
6061-T6 Hole		C _g := 1.0	groupa	action factor, 103.6	
$F_{yb} = 65000$	bending yield strength, psi.	$C_{\Delta} := 1.0$	geome	etry factor, 11.5.1	
D = 0.375	unthreaded shank diameter of screw, in.	C _{eg} := 1.0	end gra	ain factor, 11.5.2	
D _r = 0.27	root diameter of screw	C _{di} := 1.0	diaphra	agm factor, 11.5.3	
F _{es} = 43000	bearing strength, psi	θ := 90	angle	of load to grain, degr	ee

Calculations

$$\begin{split} &\mathsf{K}_{\theta} \coloneqq 1 + 0.25 \cdot \frac{\theta}{90} = 1.25 \quad \mathsf{R}_{e} \coloneqq \frac{\mathsf{Fem}}{\mathsf{Fes}} = 0.1 \quad \mathsf{R}_{t} \coloneqq \frac{\mathsf{Im}}{\mathsf{Is}} = 12 \\ &\mathsf{K}_{1} \coloneqq \frac{\sqrt{\mathsf{R}_{e} + 2 \cdot \mathsf{R}_{e}^{-2} \cdot (1 + \mathsf{R}_{t} + \mathsf{R}_{t}^{-2}) + \mathsf{R}_{t}^{-2} \cdot \mathsf{R}_{e}^{-3} - \mathsf{R}_{e} \cdot (1 + \mathsf{R}_{t})}{1 + \mathsf{R}_{e}} = 0.48 \\ &\mathsf{K}_{1} \coloneqq \frac{\sqrt{\mathsf{R}_{e} + 2 \cdot \mathsf{R}_{e}^{-2} \cdot (1 + \mathsf{R}_{t} + \mathsf{R}_{t}^{-2}) + \mathsf{R}_{t}^{-2} \cdot \mathsf{R}_{e}^{-3} - \mathsf{R}_{e} \cdot (1 + \mathsf{R}_{t})}{1 + \mathsf{R}_{e}} = 0.48 \\ &\mathsf{K}_{2} \coloneqq -1 + \sqrt{2 \cdot (1 + \mathsf{R}_{e})} + \frac{2 \cdot \mathsf{Fyb} \cdot (1 + 2 \cdot \mathsf{R}_{e}) \cdot \mathsf{Dr}^{2}}{3 \cdot \mathsf{Fem} \cdot \mathsf{Im}^{2}} = 0.5 \\ &\mathsf{K}_{3} \coloneqq -1 + \sqrt{\frac{2 \cdot (1 + \mathsf{R}_{e})}{\mathsf{R}_{e}}} + \frac{2 \cdot \mathsf{Fyb} \cdot (2 + \mathsf{R}_{e}) \cdot \mathsf{Dr}^{2}}{3 \cdot \mathsf{Fem} \cdot \mathsf{Im}^{2}} = 0.5 \\ &\mathsf{K}_{3} \coloneqq -1 + \sqrt{\frac{2 \cdot (1 + \mathsf{R}_{e})}{\mathsf{R}_{e}}} + \frac{2 \cdot \mathsf{Fyb} \cdot (2 + \mathsf{R}_{e}) \cdot \mathsf{Dr}^{2}}{3 \cdot \mathsf{Fem} \cdot \mathsf{Im}^{2}} \\ &\mathsf{ZIm} \coloneqq \frac{\mathsf{Dr} \cdot \mathsf{Im} \cdot \mathsf{Fem}}{\mathsf{R}_{d1}} = 998.45 \\ &\mathsf{ZIm} \coloneqq \frac{\mathsf{Dr} \cdot \mathsf{Im} \cdot \mathsf{Fem}}{\mathsf{R}_{d1}} = 998.45 \\ \mathsf{ZIm} \coloneqq \frac{\mathsf{Dr} \cdot \mathsf{Im} \cdot \mathsf{Fem}}{\mathsf{R}_{d1}} = 998.45 \\ \mathsf{ZIm} \coloneqq \frac{\mathsf{Dr} \cdot \mathsf{Im} \cdot \mathsf{Fem}}{\mathsf{R}_{d1}} = 236.93 \\ \mathsf{ZI}_{1} \coloneqq \frac{\mathsf{Im}}{\mathsf{R}_{d3}} \cdot \sqrt{\frac{2 \cdot \mathsf{Fem} \cdot \mathsf{Fyb}}{\mathsf{R}_{d3}}} \\ \mathsf{ZIm} \coloneqq \frac{\mathsf{K}_{3} \mathsf{Dr} \cdot \mathsf{Is} \cdot \mathsf{Fem}}{(2 + \mathsf{R}_{e}) \cdot \mathsf{R}_{d3}} = 236.93 \\ \mathsf{ZI}_{1} \coloneqq \mathsf{Im} (\mathsf{ZIm}, \mathsf{ZI}_{1}, \mathsf{ZI}_{1}, \mathsf{ZI}_{1}, \mathsf{ZI}_{1}, \mathsf{Z}_{1}, \mathsf{Z}_{1}) = 225.73 \\ \mathsf{ZI}_{1} \coloneqq \mathsf{Im} (\mathsf{ZIm}, \mathsf{ZI}_{1}, \mathsf{ZI}_{1}, \mathsf{Z}_{1}, \mathsf{Z}_{1}, \mathsf{Z}_{1}) = 225.73 \\ \mathsf{R}_{2} \coloneqq \mathsf{Im} (\mathsf{ZIm}, \mathsf{ZI}_{1}, \mathsf{Z}_{1}, \mathsf{Z}_{1}, \mathsf{Z}_{1}, \mathsf{Z}_{1}, \mathsf{Z}_{1}) = 225.73 \\ \mathsf{R}_{2} \coloneqq \mathsf{Im} (\mathsf{ZIm}, \mathsf{ZI}_{1}, \mathsf{Z}_{1}, \mathsf{Z}_{1}, \mathsf{Z}_{1}, \mathsf{Z}_{1}, \mathsf{Z}_{1}, \mathsf{Z}_{1}) = 225.73 \\ \mathsf{R}_{2} \coloneqq \mathsf{Im} (\mathsf{ZIm}, \mathsf{Z}_{2}, \mathsf{Z}_{1}, \mathsf{Z}_{1}, \mathsf{Z}_{1}, \mathsf{Z}_{2}) = 225.73 \\ \mathsf{R}_{2} \vdash \mathsf{Im} (\mathsf{ZIm}, \mathsf{Z}_{2}, \mathsf{Z}_{1}, \mathsf{Z}_{2}, \mathsf{Im}, \mathsf{Z}_{2}, \mathsf{Z}_{2}) = 225.73 \\ \mathsf{R}_{2} \vdash \mathsf{Im} (\mathsf{ZIm}, \mathsf{Z}_{2}, \mathsf{Z}_{2}, \mathsf{Z}_{2}) = 225.73 \\ \mathsf{R}_{2} \vdash \mathsf{Im} (\mathsf{Z}_{2}, \mathsf{Im}) = 225.73 \\ \mathsf{R}_{2} \vdash \mathsf{Im} (\mathsf{Z}_{2}, \mathsf{Im}) = 225.73 \\ \mathsf{R}_{2} \vdash \mathsf{Im} (\mathsf{Z}_{2}, \mathsf{Im}) = 225.73 \\ \mathsf{R}_{2} \vdash \mathsf{Im} (\mathsf{Im} \mathsf{Im}) = 225.73 \\ \mathsf{R}_{2} \vdash \mathsf{Im} (\mathsf{Im$$

$$W_1 = 351.84$$

$$R_{pos} := \sqrt{T_{pos}^{2} + V_{pos}^{2}} = 1176.34 \text{ lbf} \qquad R_{neg} := \sqrt{T_{neg}^{2} + V_{neg}^{2}} = 1176.34 \text{ lbf}$$

$$\alpha_{pos} := \operatorname{atan} \left(T_{pos} \cdot V_{pos}^{-1} \right) = 85.07 \cdot \deg \qquad \alpha_{neg} := \operatorname{atan} \left(T_{neg} \cdot V_{neg}^{-1} \right) = 85.07 \cdot \deg$$

RICE 105 School Creek Trail		Project Description:	Job No:		R23-08-261		
		Luxemburg, WI 54217 Phone: (920) 617-1042		Engineer:	JDB	Sheet No:	A5A
EN	GINEERING	Fax: (920) 617-1100	Star System - IBC 2021	Date:	1/10/2024	Rev:	
Template:	REI-MC-7001	www.rice-inc.com		Chk By:		Date:	

Dowel Type Fastener Capacity

	<u> </u>	Lag Screws	Detail Ref.	Sheet No:
V _{pos} := 101 ·lbf	Vnea := 101.lbf			A5B
P		Mixed Maple Sou	thern Pine	-
$T_{pos} := 1172 \cdot lbt$	T _{neg} := 1172.lbf	p := 4.25 pe	netration, in	
3/8 in Lag So	22 wrow	t _{shim} ≔ 0.75 thi	ckness of shim, in	
5/6 III Lag SC		C _D := 1.6 lo	ad duration factor, 10.3.2	
I _m := 4.5	thickness of main member, in	$C_{M} := 0.7$ we	et service factor, 103.3	
l _S := 0.375	thickness of side member, in	C _t := 1.0 ter	mperature factor, 10.3.4	
6061-T6 Hole	•	Cg := 1.0 gr	oup action factor, 10.3.6	
$F_{yb} = 65000$	bending yield strength, psi.	$C_{\Delta} := 1.0$ ge	ometry factor, 11.5.1	
D = 0.375	unthreaded shank diameter of screw, in.	C _{eg} := 1.0 er	nd grain factor, 11.5.2	
$D_{r} = 0.27$	root diameter of screw	C _{di} := 1.0 dia	aphragm factor, 11.5.3	
$F_{es} = 43000$	bearing strength, psi	$\theta := 90$ ar	gle of load to grain, deg	ee

Calculations

$$\begin{split} \mathsf{K}_{\theta} &:= 1 + 0.25 \cdot \frac{\theta}{90} = 1.25 \quad \mathsf{R}_{e} := \frac{\mathsf{F}_{em}}{\mathsf{F}_{es}} = 0.1 \quad \mathsf{R}_{t} := \frac{\mathsf{Im}}{\mathsf{I}_{s}} = 12 \\ \mathsf{K}_{1} := \frac{\sqrt{\mathsf{R}_{e} + 2 \cdot \mathsf{R}_{e}^{-2} \cdot \left(1 + \mathsf{R}_{t} + \mathsf{R}_{t}^{-2}\right) + \mathsf{R}_{t}^{2} \cdot \mathsf{R}_{e}^{-3}}{1 + \mathsf{R}_{e}} = 0.48 \\ \mathsf{K}_{1} := \frac{\sqrt{\mathsf{R}_{e} + 2 \cdot \mathsf{R}_{e}^{-2} \cdot \left(1 + \mathsf{R}_{t} + \mathsf{R}_{t}^{-2}\right) + \mathsf{R}_{t}^{2} \cdot \mathsf{R}_{e}^{-3}}{1 + \mathsf{R}_{e}} = 0.48 \\ \mathsf{R}_{2} := -1 + \sqrt{2 \cdot \left(1 + \mathsf{R}_{e}\right)} + \frac{2 \cdot \mathsf{F}_{yb} \cdot \left(1 + 2 \cdot \mathsf{R}_{e}\right) \cdot \mathsf{D}_{r}^{-2}}{3 \cdot \mathsf{F}_{em} \cdot \mathsf{Im}^{2}}} = 0.5 \\ \mathsf{K}_{3} := -1 + \sqrt{\frac{2 \cdot \left(1 + \mathsf{R}_{e}\right)}{\mathsf{R}_{e}}} + \frac{2 \cdot \mathsf{F}_{yb} \cdot \left(2 + \mathsf{R}_{e}\right) \cdot \mathsf{D}_{r}^{-2}}{3 \cdot \mathsf{F}_{em} \cdot \mathsf{Im}^{2}}} \\ \mathsf{R}_{3} := -1 + \sqrt{\frac{2 \cdot \left(1 + \mathsf{R}_{e}\right)}{\mathsf{R}_{e}}} + \frac{2 \cdot \mathsf{F}_{yb} \cdot \left(2 + \mathsf{R}_{e}\right) \cdot \mathsf{D}_{r}^{-2}}{3 \cdot \mathsf{F}_{em} \cdot \mathsf{Im}^{2}}} \\ \mathsf{R}_{3} := -1 + \sqrt{\frac{2 \cdot \left(1 + \mathsf{R}_{e}\right)}{\mathsf{R}_{e}}} + \frac{2 \cdot \mathsf{F}_{yb} \cdot \left(2 + \mathsf{R}_{e}\right) \cdot \mathsf{Dr}_{r}^{-2}}{3 \cdot \mathsf{F}_{em} \cdot \mathsf{Im}^{2}}} \\ \mathsf{R}_{3} := -1 + \sqrt{\frac{2 \cdot \left(1 + \mathsf{R}_{e}\right)}{\mathsf{R}_{d}}} + \frac{2 \cdot \mathsf{F}_{yb} \cdot \left(2 + \mathsf{R}_{e}\right) \cdot \mathsf{Dr}_{r}^{-2}}{3 \cdot \mathsf{F}_{em} \cdot \mathsf{Im}^{2}}} \\ \mathsf{R}_{3} := \frac{\mathsf{Im}} \cdot \mathsf{Im} \cdot \mathsf{Im} \cdot \mathsf{Im} \cdot \mathsf{Im} \cdot \mathsf{Im} \cdot \mathsf{Im}^{2}}{\mathsf{Im} \cdot \mathsf{Im}^{2}} = 854.63 \\ \mathsf{ZI}_{III} := \frac{\mathsf{Im} \cdot \mathsf{Im} \cdot \mathsf{Im} \cdot \mathsf{Im}^{2}}{\mathsf{R}_{d1}} = 998.45 \\ \mathsf{ZI}_{III} := \frac{\mathsf{Im} \cdot \mathsf{Im} \cdot \mathsf{Im} \cdot \mathsf{Im}^{2}}{\mathsf{R}_{d1}} = 854.63 \\ \mathsf{ZI}_{III} := \frac{\mathsf{Im} \cdot \mathsf{Im} \cdot \mathsf{Im} \cdot \mathsf{Im} \cdot \mathsf{Im} \cdot \mathsf{Im}^{2}}{\mathsf{R}_{d2}} = 454.32 \\ \mathsf{ZI}_{IIIIm} := \frac{\mathsf{K}_{2} \cdot \mathsf{Dr}_{1} \cdot \mathsf{Im} \cdot \mathsf{Im} \cdot \mathsf{Im}^{2}}{\mathsf{R}_{d3}} = 518.01 \\ \mathsf{ZI}_{IIII} := \frac{\mathsf{K}_{3} \cdot \mathsf{Dr}_{1} \cdot \mathsf{Im} \mathsf{Im}^{2}}{(2 + \mathsf{R}_{e}) \cdot \mathsf{R}_{d3}} = 236.93 \\ \mathsf{ZI}_{III} := \mathsf{Im} \left(\mathsf{ZI}_{Im} \mathsf{ZI}_{III} \mathsf{Im} \mathsf{Im}^{2} \mathsf{Im}^{2} + \mathsf{Im}^{2} \mathsf{Im}^{2} + \mathsf{Im}^{2} \mathsf{Im}^{2} + \mathsf{Im}^{2} \mathsf{Im}^{2} + \mathsf{Im}^{2} \mathsf{Im}^{2}} = 1176.34 \, \mathsf{Ibf} \\ \mathsf{R}_{neg} := \sqrt{\mathsf{Tm}_{ng}^{-2} + \mathsf{Im}_{ng}^{-2}} = 1176.34 \, \mathsf{Ibf} \\ \mathsf{R}_{neg} := \sqrt{\mathsf{Tm}_{ng}^{-2} + \mathsf{Im}^{2} \mathsf{Im}^{2} = 1176.34 \, \mathsf{Ibf} \\ \mathsf{R}_{neg} := \sqrt{\mathsf{Tm}_{ng}^{-2} + \mathsf{Im}^{2} \mathsf{Im}^{2} \mathsf{Im}^{2} \mathsf{Im}^{2} \mathsf{Im}^{2} \mathsf{Im}^{2} \mathsf{Im}^$$

$$W_1 = 351.84$$

$\alpha_{\text{pos}} := \text{atan} \left(T_{\text{pos}} \cdot V_{\text{pos}}^{-1} \right) = 85.07 \cdot \text{deg}$ $\alpha_{\text{neg}} := \operatorname{atan}\left(\mathsf{T}_{\text{neg}} \cdot \mathsf{V}_{\text{neg}}^{-1}\right) = 85.07 \cdot \text{deg}$

RICE	•	105 School Creek Trail	Project Description:	Job No:		R23-08-261	
		Luxemburg, WI 54217 Phone: (920) 617-1042		Engineer:	JDB	Sheet No:	A5B
E	NGINEERING	Fax: (920) 617-1100	Star System - IBC 2021	Date:	1/10/2024	Rev:	
Template:	REI-MC-7001	www.rice-inc.com		Chk By:		Date:	

Dowel Type Fastener Capacity

Douvol Timo I	a atawa v Canaaitu			
	astener Capacity	Lag Screws	Detail Ref. S	Sheet No: A5C
V _{pos} := 101·lbf	V _{neg} := 101·lbf			/ 10 0
		Spruce Pine-F	ir	•
T _{pos} := 1172·lbf	T _{neg} := 1172·lbf	p := 4.3125	penetration, in	
3/8 in L og Sc	TOW SS	t _{shim} := 0.75	thickness of shim, in	
3/8 in Lag Screw SS		C _D := 1.6	load duration factor, 10.3.2	
I _m := 4.5	thickness of main member, in.	C _M := 1.0	wet service factor, 103.3	
l _S := 0.375	thickness of side member, in	C _t := 1.0	temperature factor, 10.3.4	
6061-T6 Hol	e 🗸	C _g := 1.0	group action factor, 103.6	
$F_{yb} = 65000$	bending yield strength, psi.	$C_{\Delta} := 1.0$	geometry factor, 11.5.1	
D = 0.375	unthreaded shank diameter of screw, in.	C _{eg} := 1.0	end grain factor, 11.5.2	
D _r = 0.27	root diameter of screw	C _{di} := 1.0	diaphragm factor, 11.5.3	
F _{es} = 43000	bearing strength, psi	$\theta := 90$	angle of load to grain, degree	

Calculations

$$\begin{split} \mathsf{K}_{\theta} &:= 1 + 0.25 \cdot \frac{\theta}{90} = 1.25 \quad \mathsf{R}_{\theta} := \frac{\mathsf{Fem}}{\mathsf{Fes}} = 0.07 \quad \mathsf{R}_{t} := \frac{\mathsf{Im}}{\mathsf{Is}} = 12 \\ \mathsf{K}_{1} := \frac{\sqrt{\mathsf{Re} + 2 \cdot \mathsf{Re}^{2} \cdot \left(1 + \mathsf{Rt} + \mathsf{Rt}^{2}\right) + \mathsf{Rt}^{2} \cdot \mathsf{Re}^{3}}{1 + \mathsf{Re}} - \mathsf{Re} \cdot \left(1 + \mathsf{Rt}\right)} = 0.33 \\ \mathsf{K}_{1} := \frac{\sqrt{\mathsf{Re} + 2 \cdot \mathsf{Re}^{2} \cdot \left(1 + \mathsf{Rt} + \mathsf{Rt}^{2}\right) + \mathsf{Rt}^{2} \cdot \mathsf{Re}^{3}}{1 + \mathsf{Re}} - \mathsf{Re} \cdot \left(1 + \mathsf{Rt}\right)} = 0.33 \\ \mathsf{K}_{2} := -1 + \sqrt{2 \cdot \left(1 + \mathsf{Re}\right)} + \frac{2 \cdot \mathsf{Fyb} \cdot \left(1 + 2 \cdot \mathsf{Re}\right) \cdot \mathsf{Dr}^{2}}{3 \cdot \mathsf{Fem}^{-1} \mathsf{R}^{2}}} = 0.48 \\ \mathsf{K}_{3} := -1 + \sqrt{\frac{2 \cdot \left(1 + \mathsf{Re}\right)}{\mathsf{Re}}} + \frac{2 \cdot \mathsf{Fyb} \cdot \left(2 + \mathsf{Re}\right) \cdot \mathsf{Dr}^{2}}{3 \cdot \mathsf{Fem}^{-1} \mathsf{R}^{2}}} \\ \mathsf{R}_{3} := -1 + \sqrt{\frac{2 \cdot \left(1 + \mathsf{Re}\right)}{\mathsf{Re}}} + \frac{2 \cdot \mathsf{Fyb} \cdot \left(2 + \mathsf{Re}\right) \cdot \mathsf{Dr}^{2}}{3 \cdot \mathsf{Fem}^{-1} \mathsf{R}^{2}}} \\ \mathsf{R}_{3} := \frac{\mathsf{Dr} \cdot \mathsf{Im} \cdot \mathsf{Fem}}{\mathsf{Rd}^{1}} = 675.33 \qquad \mathsf{ZI}_{15} := \frac{\mathsf{Dr} \cdot \mathsf{Is} \cdot \mathsf{Fes}}{\mathsf{Rd}^{1}} = 854.63 \\ \mathsf{ZI}_{11} := \frac{\mathsf{K}_{2} \cdot \mathsf{Dr} \cdot \mathsf{K}_{3}}{\mathsf{Rd}^{1}} = 202.26 \\ \mathsf{ZI}_{11} := \frac{\mathsf{K}_{3} \cdot \mathsf{Dr} \cdot \mathsf{S} \cdot \mathsf{Fem}}{\mathsf{Rd}^{2}} = 202.26 \\ \mathsf{ZI}_{11} := \frac{\mathsf{Im} \left(\mathsf{ZIm},\mathsf{ZI}_{13},\mathsf{ZI}_{11},\mathsf{ZI}_{11},\mathsf{ZI}_{13},\mathsf{ZI}_{12}\right) = 188.37 \\ \mathsf{Rns} := \sqrt{\mathsf{Tns}^{2} + \mathsf{Vnss}^{2}} = 1176.34 \ \mathsf{lbf} \qquad \mathsf{Rneg} := \sqrt{\mathsf{Tns}^{2} + \mathsf{Vnsg}^{2}} = 1176.34 \ \mathsf{lbf} \\ \mathsf{Rneg} := \sqrt{\mathsf{Tnsg}^{2} + \mathsf{Vnsg}^{2}} = 1176.34 \ \mathsf{lbf} \\ \mathsf{Rneg} := \sqrt{\mathsf{Tnsg}^{2} + \mathsf{Vnsg}^{2}} = 1176.34 \ \mathsf{lbf} \\ \mathsf{Rns} := \sqrt{\mathsf{Tnsg}^{2} + \mathsf{Vnsg}^{2}} = 1176.34 \ \mathsf{lbf} \\ \mathsf{Rnss} := \sqrt{\mathsf{Tnsg}^{2} + \mathsf{Vnsg}^{2}} = 1176.34 \ \mathsf{lbf} \\ \mathsf{Rnss} := \sqrt{\mathsf{Tnsg}^{2} + \mathsf{Vnsg}^{2}} = 1176.34 \ \mathsf{lbf} \\ \mathsf{Rnss} := \sqrt{\mathsf{Tnsg}^{2} + \mathsf{Vnsg}^{2}} = 1176.34 \ \mathsf{lbf} \\ \mathsf{Rnss} := \sqrt{\mathsf{Tnsg}^{2} + \mathsf{Vnsg}^{2}} = 1176.34 \ \mathsf{lbf} \\ \mathsf{Rnss} := \sqrt{\mathsf{Tnsg}^{2} + \mathsf{Vnsg}^{2}} = 1176.34 \ \mathsf{lbf} \\ \mathsf{Rnss} := \sqrt{\mathsf{Tnsg}^{2} + \mathsf{Vnsg}^{2}} = 1176.34 \ \mathsf{lbf} \\ \mathsf{Rnss} := \sqrt{\mathsf{Rns}^{2} + \mathsf{Vnsg}^{2}} = 1176.34 \ \mathsf{lbf} \\ \mathsf{Rnss} := \sqrt{\mathsf{Rns}^{2} + \mathsf{Vnsg}^{2}} = 1176.34 \ \mathsf{lbf} \\ \mathsf{Rnss} := \sqrt{\mathsf{Rns}^{2} + \mathsf{Vnsg}^{2}} = 1176.34 \ \mathsf{lbf} \\ \mathsf{Rnss} := \sqrt{\mathsf{Rns}^{2} + \mathsf{Vnsg}^{2}} = 1176.34 \ \mathsf{lbf} \\ \mathsf{Rnss} := \sqrt{\mathsf{Rns}^{2}$$

$$W_1 = 234.78$$

$$\sqrt{3 \cdot (1 + R_{e})}$$

$$R_{pos} := \sqrt{T_{pos}^{2} + V_{pos}^{2}} = 1176.34 \text{ lbf}$$

$$R_{neg} := \sqrt{T_{neg}^{2} + V_{neg}^{2}} = 1176.34 \text{ lbf}$$

$$\alpha_{pos} := \operatorname{atan} \left(T_{pos} \cdot V_{pos}^{-1} \right) = 85.07 \cdot \deg$$

$$\alpha_{neg} := \operatorname{atan} \left(T_{neg} \cdot V_{neg}^{-1} \right) = 85.07 \cdot \deg$$

RICE		105 School Creek Trail	Project Description:	Job No:		R23-08-261	
		Luxemburg, WI 54217 Phone: (920) 617-1042		Engineer:	JDB	Sheet No:	A5C
EN	GINEERING	Fax: (920) 617-1100	Star System - IBC 2021	Date:	1/10/2024	Rev:	
Template:	REI-MC-7001	www.rice-inc.com		Chk By:		Date:	

Dowel Type Fastener Capacity (NDS 2012)

		Lag Screws	Detail Ref.	Sheet No:
V _{pos} := 101 ·lbf	V _{neg} := 101⋅lbf	Lay Screws		A5.1
	-	Mixed Maple Sout	nern Pine	
T _{pos} := 1172 ·lbf	$T_{neg} := 1172 \cdot lbf$	p := 4.5 pen	etration, in	
3/8 in Lag Sc	row 88	t _{shim} := 0.75 thic	kness of shim, in	
3/8 III Lag 30		C _D := 1.6 load	duration factor, 10.3.2	2
I _m := 4.5	thickness of main member, in	C _M := 0.7 wet	service factor, 103.3	
l _S := 0.375	thickness of side member, in	C _t := 1.0 tem	perature factor, 10.3.4	
6061-T6 Hole		Cg := 1.0 grou	up action factor, 103.6	
$F_{yb} = 65000$	bending yield strength, psi.	$C_{\Delta} := 1.0$ geo	metry factor, 11.5.1	
D = 0.375	unthreaded shank diameter of screw, in.	C _{eg} := 1.0 end	grain factor, 11.5.2	
D _r = 0.27	root diameter of screw	C _{di} := 1.0 diap	bhragm factor, 11.5.3	
$F_{es} = 43000$	bearing strength, psi	$\theta := 90$ ang	le of load to grain, degr	ree

Calculations

$$\begin{split} \mathsf{K}_{\theta} &:= 1 + 0.25 \cdot \frac{\theta}{90} = 1.25 \quad \mathsf{R}_{\theta} := \frac{\mathsf{Fem}}{\mathsf{Fes}} = 0.1 \quad \mathsf{R}_{t} := \frac{\mathsf{Im}}{\mathsf{Is}} = 12 \\ \mathsf{K}_{1} := \frac{\sqrt{\mathsf{R}_{e} + 2 \cdot \mathsf{R}_{e}^{2}} \left(1 + \mathsf{R}_{t} + \mathsf{R}_{t}^{2}\right) + \mathsf{R}_{t}^{2} \cdot \mathsf{R}_{e}^{3}}{1 + \mathsf{R}_{e}} = 0.48 \\ \mathsf{K}_{1} := \frac{\sqrt{\mathsf{R}_{e} + 2 \cdot \mathsf{R}_{e}^{2}} \left(1 + \mathsf{R}_{t} + \mathsf{R}_{t}^{2}\right) + \mathsf{R}_{t}^{2} \cdot \mathsf{R}_{e}^{3}}{1 + \mathsf{R}_{e}} = 0.48 \\ \mathsf{R}_{2} := -1 + \sqrt{2 \cdot \left(1 + \mathsf{R}_{e}\right)} + \frac{2 \cdot \mathsf{Fyb} \cdot \left(1 + 2 \cdot \mathsf{R}_{e}\right) \cdot \mathsf{Dr}^{2}}{3 \cdot \mathsf{Fem}^{-1}\mathsf{m}^{2}}} = 0.5 \\ \mathsf{K}_{3} := -1 + \sqrt{\frac{2 \cdot \left(1 + \mathsf{R}_{e}\right)}{\mathsf{R}_{e}}} + \frac{2 \cdot \mathsf{Fyb} \cdot \left(2 + \mathsf{R}_{e}\right) \cdot \mathsf{Dr}^{2}}{3 \cdot \mathsf{Fem}^{-1}\mathsf{s}^{2}}} \\ \mathsf{R}_{3} := -1 + \sqrt{\frac{2 \cdot \left(1 + \mathsf{R}_{e}\right)}{\mathsf{R}_{e}}} + \frac{2 \cdot \mathsf{Fyb} \cdot \left(2 + \mathsf{R}_{e}\right) \cdot \mathsf{Dr}^{2}}{3 \cdot \mathsf{Fem}^{-1}\mathsf{s}^{2}}} \\ \mathsf{R}_{3} := \frac{\mathsf{Dr} \cdot \mathsf{Im}^{-\mathsf{Fem}}}{\mathsf{R}_{d1}} = 998.45 \quad \mathsf{Z}_{1} := \frac{\mathsf{Dr} \cdot \mathsf{Is}^{\mathsf{Fes}}}{\mathsf{R}_{d1}} = 854.63 \\ \mathsf{Z}_{1} := \frac{\mathsf{M}_{2} := \frac{\mathsf{M}_{1} := \mathsf{Im} \cdot \mathsf{Is}^{\mathsf{C}} : \mathsf{Sm}_{2}}{\mathsf{R}_{d2}} = 454.32 \\ \mathsf{Z}_{1} := \frac{\mathsf{R}_{2} \cdot \mathsf{Dr} \cdot \mathsf{Im}^{\mathsf{Fem}}}{\mathsf{R}_{d3}} = 236.93 \\ \mathsf{Z}_{1} := \min \left(\mathsf{Z}_{1} \mathsf{R}_{2} \mathsf{R}_{2} \cdot \mathsf{Im}_{3} \mathsf{Im}, \mathsf{Z}_{1} \mathsf{Im}, \mathsf{Z$$

$$W_1 = 351.84$$

$\alpha_{\text{pos}} := \operatorname{atan}\left(\operatorname{T_{pos}} \cdot \operatorname{V_{pos}}^{-1}\right) = 85.07 \cdot \operatorname{deg}$ $\alpha_{\text{neg}} := \operatorname{atan}\left(\mathsf{T}_{\text{neg}} \cdot \mathsf{V}_{\text{neg}}^{-1}\right) = 85.07 \cdot \text{deg}$

RICE		105 School Creek Trail	Project Description:	Job No:		R21-06-033	
		Luxemburg, WI 54217 Phone: (920) 617-1042		Engineer:	JDB	Sheet No:	A5.1
EN	GINEERING	Fax: (920) 617-1100	Star System - IBC 2018	Date:	7/14/2021	Rev:	
Template:	REI-MC-7001	www.rice-inc.com		Chk By:		Date:	

RIC		105 School Creek Trail	Project Description:	Job No:		R23-08-261	
		Luxemburg, WI 54217 Phone: (920) 617-1042		Engineer:	JDB	Sheet No:	A6
	ENGINEERING	Fax: (920) 617-1042	Star System - IBC 2021	Date:	1/10/2024	Rev:	
Template:	REI-MC-5799	www.rice-inc.com		Chk By:		Date:	

Section Properties	Detail Ref.	Sheet No:	
Section Properties		S1	

Area:	0.6249 sq in 17.6024 in
Perimeter:	
Bounding box:	X: -1.4272 1.0728 in
	Y: -1.2347 1.0153 in
Centroid:	X: 0.0000 in
	Y: 0.0000 in
Moments of inertia:	X: 0.3194 in4
	Y: 0.4956 in4
Section Modulus:	X: 0.259 in3
	Y: 0.347 in3
Torsional Constant:	J: 0.4 in4

Area: Perimeter:	0.8025 sq in 9.8800 in
Bounding box:	X: -0.8650 0.8650 in
Centroid:	Y: -0.8650 0.8650 in X: 0.0000 in
Managarta of in oution	Y: 0.0000 in
Moments of inertia:	X: 0.3466 in4 Y: 0.1098 in4
Radii of gyration:	X: 0.6572 in
Section Modulus:	Y: 0.3699 in X: 0.401 in3 Y: 0.127 in3

RICE		105 School Creek Trail	Project Description:	Job No:		R23-08-261	
		Luxemburg, WI 54217 Phone: (920) 617-1042		Engineer:	JDB	Sheet No:	S1
EN	GINEERING	Fax: (920) 617-1100	Star System - IBC 2021	Date:	1/10/2024	Rev:	
Template:	REI-MC-5701	www.rice-inc.com		Chk By:		Date:	

Section Drepartica	Detail Ref.	Sheet No:	
Section Properties		S2	

Area: Perimeter:	0.2125 sq in 6.8720 in
	X: -0.4247 1.0753 in
Bounding box:	
	Y: -0.3698 0.6302 in
Centroid:	X: 0.0000 in
	Y: 0.0000 in
Moments of inertia:	X: 0.0281 in4
	Y: 0.0389 in4
Section Modulus:	X: 0.045 in3
	Y: 0.036 in3

Area:	0.1864 sq in
Perimeter:	6.0440 in
Bounding box:	X: -0.9791 0.3909 in
	Y: -0.6086 0.3084 in
Centroid:	X: 0.0000 in
	Y: 0.0000 in
Moments of inertia:	X: 0.0180 in4
	Y: 0.0295 in4
Section Modulus:	X: 0.03 in3
	Y: 0.03 in3

RICE	,	105 School Creek Trail	Project Description:	Job No:		R23-08-261	
		Luxemburg, WI 54217 Phone: (920) 617-1042		Engineer:	JDB	Sheet No:	S2
EN	NGINEERING	Fax: (920) 617-1100	Star System - IBC 2021	Date:	1/10/2024	Rev:	
Template:	REI-MC-5701	www.rice-inc.com		Chk By:		Date:	

APPENDIX A: CONCRETE ANCHORS

www.hilti.com			
Company:		Page:	1
Address:		Specifier:	
Phone I Fax: Design:	l A4- IBC Adhesive	E-Mail: Date:	1/11/2024
Fastening point:	A4- IDC Adriesive	Date.	1/11/2024
Specifier's comments:			
1 Input data			
Anchor type and diameter:	HIT-HY 200 V3 + HIT-Z-R 3		
Item number:	2018451 HIT-Z-R 3/8" x 4 3/ HIT-HY 200-R V3 (adhesive		
Effective embedment depth:	$h_{ef,opti}$ = 2.690 in. ($h_{ef,limit}$ = 2.	750 in.)	

	HIT-HY 200-R V3 (adhesive)
Effective embedment depth:	h _{ef,opti} = 2.690 in. (h _{ef,limit} = 2.750 in.)
Material:	A4
Evaluation Service Report:	ESR-4868
Issued I Valid:	11/1/2022 11/1/2024
Proof:	Design Method ACI 318-19 / Chem
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.375 in.
Anchor plate ^R :	$I_x \times I_y \times t = 5.000$ in. x 5.000 in. x 0.375 in.; (Recommended plate thickness: not calculated)
Profile:	no profile
Base material:	cracked concrete, 4000, f_c = 4,000 psi; h = 5.000 in., Temp. short/long: 130/110 $^\circ F$
Installation:	hammer drilled hole, Installation condition: Dry
Reinforcement:	tension: not present, shear: not present; no supplemental splitting reinforcement present
	edge reinforcement: none or < No. 4 bar

 $^{\rm R}$ - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com				
Company:		Page:		2
Address:		Specifier:		
Phone I Fax:		E-Mail:		
Design: Fastening point:	A4- IBC Adhesive	Date:		1/11/2024
1.1 Design result	'S			
Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	$N = 0; V_x = 323; V_y = 0;$	no	100
		$M_x = 0; M_y = 13,547; M_z = 0;$		

2 Load case/Resulting anchor forces

Anchor reactions [lb] Tension force: (+Tension, -Compression)				
Anchor	Tension force	Shear force	Shear force x	Shear force y
1	1,749	81	81	0
2	0	81	81	0
3	1,749	81	81	0
4	0	81	81	0
max. concrete compressive strain: $0.28 \ [\%]$ max. concrete compressive stress: $1,233 \ [psi]$ resulting tension force in $(x/y)=(0.000/0.000)$: $0 \ [lb]$ resulting compression force in $(x/y)=(4.622/2.500)$: $3,499 \ [lb]$				

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N _{ua} [lb]	Capacity ଦ N _n [lb]	Utilization $\beta_N = N_{ua} / \Phi N_n$	Status
Steel Strength*	1,749	4,749	37	OK
Pullout Strength*	1,749	5,169	34	ОК
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	3,499	3,503	100	OK

* highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

Company:		Page:	3
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	A4- IBC Adhesive	Date:	1/11/2024
Fastening point:			

3.1 Steel Strength

N _{sa} = ESR value	refer to ICC-ES ESR-4868
∮ N _{sa} ≥ N _{ua}	ACI 318-19 Table 17.5.2

Variables

A _{se,N} [in. ²]	f _{uta} [psi]
0.08	94,200

Calculations

N_{sa} [lb] 7,306

Results

_	N _{sa} [lb]	φ _{steel}	φ N _{sa} [lb]	N _{ua} [lb]
	7,306	0.650	4,749	1,749

3.2 Pullout Strength

$N_{pn} = N_p \lambda_a$	refer to ICC-ES ESR-4868
$\phi N_{pn} \ge N_{ua}$	ACI 318-19 Table 17.5.2

Variables

λ _a	N _p [lb]
1.000	7,952
Calculations	
N _{pn} [lb]	

7,952

N _{pn} [lb]	ϕ_{concrete}	φ N _{pn} [lb]	N _{ua} [lb]
7,952	0.650	5,169	1,749

www.hilti.com

Company:		Page:	4
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	A4- IBC Adhesive	Date:	1/11/2024
Fastening point:			

3.3 Concrete Breakout Failure

$N_{cbg} = \left(\frac{A_{Nc}}{A_{Nc}}\right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b}$	ACI 318-19 Eq. (17.6.2.1b)
$\phi N_{cbg} \ge N_{ua}$	ACI 318-19 Table 17.5.2
A_{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b) A_{Nc0} = 9 h_{ef}^2	ACI 318-19 Eq. (17.6.2.1.4)
$\Psi_{\text{ec,N}} = \left(\frac{1}{1 + \frac{2 e_{N}}{3 h_{\text{ef}}}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.3.1)
$\Psi_{\text{ed,N}} = 0.7 + 0.3 \left(\frac{c_{a,\text{min}}}{1.5h_{\text{ef}}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\Psi_{cp,N} = MAX \left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.6.1b)
$N_{\rm b} = k_{\rm c} \lambda_{\rm a} \sqrt{f_{\rm c}} h_{\rm ef}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	$\Psi_{c,N}$
2.690	0.000	0.000	3.250	1.000
c _{ac} [in.]	k _c	λ _a	f _c [psi]	
6.678	17	1.000	4,000	

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\Psi_{\text{ec1,N}}$	$\Psi_{ec2,N}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
78.57	65.12	1.000	1.000	0.942	1.000	4,743
Results						
N _{cbg} [lb]	ϕ_{concrete}	φ N _{cbg} [lb]	N _{ua} [lb]			
5,389	0.650	3,503	3,499	-		

www.hilti.com	
---------------	--

Company: Address:		Page: Specifier:	5
Phone I Fax:	I	E-Mail:	
Design: Fastening point:	A4- IBC Adhesive	Date:	1/11/2024

4 Shear load

	Load V _{ua} [lb]	Capacity ଦ V _n [lb]	Utilization $\beta_{\rm V} = V_{\rm ua} / \Phi V_{\rm n}$	Status
Steel Strength*	81	2,630	4	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Concrete Breakout Strength controls)**	323	11,169	3	ОК
Concrete edge failure in direction y+**	323	3,932	9	OK

* highest loaded anchor **anchor group (relevant anchors)

4.1 Steel Strength

V_{sa}	= ESR value	refer to ICC-ES ESR-4868
φ V _{ste}	$_{el} \geq V_{ua}$	ACI 318-19 Table 17.5.2

Variables

A _{se,V} [in. ²]	f _{uta} [psi]
0.08	94,200

Calculations

V_{sa} [lb] 4,384

V _{sa} [lb]	∮ _{steel}	φ V _{sa} [lb]	V _{ua} [lb]
4,384	0.600	2,630	81

www.	hilti.	com

Company:		Page:	6
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	A4- IBC Adhesive	Date:	1/11/2024
Fastening point:			

4.2 Pryout Strength (Concrete Breakout Strength controls)

$V_{cpg} = K_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-19 Eq. (17.7.3.1b)
$\phi V_{cpg} \ge V_{ua}$	ACI 318-19 Table 17.5.2
A _{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	
$A_{\rm Nc0} = 9 h_{\rm ef}^2$	ACI 318-19 Eq. (17.6.2.1.4)
$\psi_{ec,N} = \left(\frac{1}{1 + \frac{2 e_N}{3 h_{ef}}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.3.1)
$\Psi_{ed,N} = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\Psi_{\text{cp,N}} = \text{MAX}\left(\frac{c_{a,\text{min}}}{c_{ac}}, \frac{1.5h_{\text{ef}}}{c_{ac}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.6.1b)
$N_{\rm b} = k_{\rm c} \lambda_{\rm a} \sqrt{\dot{f_{\rm c}}} h_{\rm ef}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	_
2	2.690	0.000	0.000	3.250	
$\Psi_{c,N}$	c _{ac} [in.]	k _c	λ _a	ŕ _c [psi]	
1.000	6.678	17	1.000	4,000	_
1.000	0.070	17	1.000	4,000	

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\Psi_{\text{ec1,N}}$	$\Psi_{ec2,N}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
116.31	65.12	1.000	1.000	0.942	1.000	4,743
Results						
V _{cpg} [lb]	ϕ_{concrete}	φ V _{cpg} [lb]	V _{ua} [lb]	_		
15,956	0.700	11,169	323	-		

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

Company:		Page:	7
Address:		Specifier:	
Phone Fax:		E-Mail:	
Design:	A4- IBC Adhesive	Date:	1/11/2024
Fastening point:			

4.3 Concrete edge failure in direction y+

$V_{cbg} = \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ec,V} \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_{b}$	ACI 318-19 Eq. (17.7.2.1b)
$\phi V_{cbg} \ge V_{ua}$	ACI 318-19 Table 17.5.2
A _{Vc} see ACI 318-19, Section 17.7.2.1, Fig. R 17.7.2.1(b)	
$A_{Vc0} = 4.5 c_{a1}^2$	ACI 318-19 Eq. (17.7.2.1.3)
$\psi_{ec,V} = \left(\frac{1}{1 + \frac{e_v}{1.5c_{a1}}}\right) \le 1.0$	ACI 318-19 Eq. (17.7.2.3.1)
$\Psi_{\text{ed},V} = 0.7 + 0.3 \left(\frac{c_{a2}}{1.5c_{a1}} \right) \le 1.0$	ACI 318-19 Eq. (17.7.2.4.1b)
$\psi_{h,V} = \sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0$	ACI 318-19 Eq. (17.7.2.6.1)
$V_{b} = \left(7 \left(\frac{I_{e}}{d_{a}}\right)^{0.2} \sqrt{d_{a}}\right) \lambda_{a} \sqrt{f_{c}} c_{a1}^{1.5}$	ACI 318-19 Eq. (17.7.2.2.1a)

Variables

c _{a1} [in.]	c _{a2} [in.]	e _{cV} [in.]	$\Psi_{\text{c,V}}$	h _a [in.]
3.250	3.250	0.000	1.000	5.000
l _e [in.]	λ_{a}	d _a [in.]	f _c [psi]	$\Psi_{\text{ parallel},V}$
2.690	1.000	0.375	4,000	2.000

Calculations

A _{vc} [in. ²]	A _{Vc0} [in. ²]	$\psi_{\text{ ec,V}}$	$\psi_{\text{ed},\text{V}}$	$\psi_{h,V}$	V _b [lb]
56.67	47.53	1.000	1.000	1.000	2,356
Results					
V _{cbg} [lb]	ϕ_{concrete}	φ V _{cbg} [lb]	V _{ua} [lb]		
5,617	0.700	3,932	323	-	

5 Combined tension and shear loads, per ACI 318-19 section 17.8

β _N	β _V	ζ	Utilization $\beta_{N,V}$ [%]	Status	
0.999	0.082	1.000	91	OK	

 $\beta_{\rm NV}=\left(\beta_{\rm N}+\beta_{\rm V}\right)/\,1.2<=1$

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com			
Company:		Page:	8
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	A4- IBC Adhesive	Date:	1/11/2024
Fastening point:			

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

www.hilti.com			
Company:		Page:	9
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	A4- IBC Adhesive	Date:	1/11/2024
Fastening point:			
7 Installation d	ata		
		Anchor type and diameter: HIT-F	IY 200 V3 + HIT-Z-R 3/8
		Item number: 2018/51 HIT-7-R ($3/8" \times 1.3/8"$ (element) /

F	Profile: no profile	Item number: 2018451 HIT-Z-R 3/8" x 4 3/8" (element) /	
	•	2334276 HIT-HY 200-R V3 (adhesive)	
	Hole diameter in the fixture (pre-setting) : $d_f = 0.438$ in.	Maximum installation torque: 354 in.lb	
	Hole diameter in the fixture (through fastening) : $d_f = 0.500$ in.	Hole diameter in the base material: 0.438 in.	
	Plate thickness (input): 0.375 in.	Hole depth in the base material: 3.690 in.	
	Recommended plate thickness: not calculated	Minimum thickness of the base material: 4.940 in.	
	Drilling method: Hammer drilled		
	Cleaning: Compressed air cleaning of the drilled hole according to instructions		

for use is required

3/8 Hilti HIT-Z Stainless steel non-cleaning bonded expansion anchor with Hilti HIT-HY 200 V3 Safe Set System

7.1 Recommended accessories

Coordinates Anchor [in.]

Anchor	x	У	C _{-x}	C+x	C_y	c _{+y}
1	-1.750	-1.750	3.250	-	-	6.750
2	1.750	-1.750	6.750	-	-	6.750
3	-1.750	1.750	3.250	-	-	3.250
4	1.750	1.750	6.750	-	-	3.250

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com			
Company:		Page:	10
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	A4- IBC Adhesive	Date:	1/11/2024
Fastening point:			

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

www.hilti.com			
Company:		Page:	1
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Á4- IBC KBTZ	Date:	1/11/2024
Fastening point:			

Specifier's comments:

1 Input data

Anchor type and diameter:	Kwik Bolt TZ2 - SS 304 3/8 (2 1/2) hnom3	
Item number:	2210245 KB-TZ2 3/8x5 SS304	
Effective embedment depth:	$h_{ef,act}$ = 2.500 in., h_{nom} = 3.000 in.	
Material:	AISI 304	
Evaluation Service Report:	ESR-4266	
Issued I Valid:	12/17/2021 12/1/2023	
Proof:	Design Method ACI 318-19 / Mech	
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.375 in.	
Anchor plate ^R :	$l_x \ge l_y \ge t = 5.000$ in. x 5.000 in. x 0.375 in.; (Recommend	ded plate thickness: not calculated)
Profile:	no profile	
Base material:	cracked concrete, 4000, $f_{\rm c}$ = 4,000 psi; h = 5.000 in.	
Installation:	hammer drilled hole, Installation condition: Dry	
Reinforcement:	tension: not present, shear: not present; no supplement	al splitting reinforcement present
	edge reinforcement: none or < No. 4 bar	

 $^{\rm R}$ - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com				
Company:		Page:		2
Address:		Specifier:		
Phone I Fax:		E-Mail:		
Design:	Á4- IBC KBTZ	Date:		1/11/2024
Fastening point:				
1.1 Design result	s			
Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	$N = 0; V_x = 323; V_y = 0;$	no	100
		$M_x = 0; M_y = 13,547; M_z = 0;$		

2 Load case/Resulting anchor forces

Anchor reactions [lb] Tension force: (+Tension, -Compression)				
Anchor	Tension force	Shear force	Shear force x	Shear force y
1	1,722	81	81	0
2	0	81	81	0
3	1,722	81	81	0
4	0	81	81	0
max. concrete compressive strain: $0.33 \ [\%]$ max. concrete compressive stress: $1,453 \ [psi]$ resulting tension force in $(x/y)=(0.000/0.000)$: $0 \ [lb]$ resulting compression force in $(x/y)=(4.684/2.500)$: $3,444 \ [lb]$				

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N _{ua} [lb]	Capacity ଦ N _n [lb]	Utilization $\beta_N = N_{ua} / \Phi N_n$	Status
Steel Strength*	1,722	4,637	38	OK
Pullout Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	3,444	3,465	100	ОК

* highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

Company: Address:		Page: Specifier:	3
Phone I Fax:		E-Mail:	
Design: Fastening point:	Á4- IBC KBTZ	Date:	1/11/2024

3.1 Steel Strength

N _{sa} = ESR value	refer to ICC-ES ESR-4266
$\phi \ N_{sa} \ge N_{ua}$	ACI 318-19 Table 17.5.2

Variables

A _{se,N} [in. ²]	f _{uta} [psi]
0.05	120,104

Calculations

N _{sa} [lb]	
6.182	

N _{sa} [lb]	φ _{steel}	φ N _{sa} [lb]	N _{ua} [lb]
6,182	0.750	4,637	1,722

www.hilti.com

Company:		Page:	4
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	A4- IBC KBTZ	Date:	1/11/2024
Fastening point:			

3.2 Concrete Breakout Failure

$N_{cbg} = \left(\frac{A_{Nc}}{A_{Nc}}\right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b}$	ACI 318-19 Eq. (17.6.2.1b)
$\phi \ N_{cbg} \ge N_{ua}$	ACI 318-19 Table 17.5.2
A _{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	
$A_{\rm Nc0} = 9 h_{\rm ef}^2$	ACI 318-19 Eq. (17.6.2.1.4)
$\psi_{ec,N} = \left(\frac{1}{1 + \frac{2 e_N}{3 h_{ef}}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.3.1)
$\Psi_{ed,N} = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\Psi_{cp,N} = MAX\left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.6.1b)
$N_{\rm b} = K_{\rm c} \lambda_{\rm a} \sqrt{f_{\rm c}} h_{\rm ef}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	$\Psi_{c,N}$
2.500	0.000	0.000	3.250	1.000
c _{ac} [in.]	k _c	λ _a	f _c [psi]	
4.000	17	1.000	4,000	

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\psi_{\text{ ec1,N}}$	$\Psi_{\text{ec2,N}}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
73.50	56.25	1.000	1.000	0.960	1.000	4,250
Results						
N _{cbg} [lb]	ϕ_{concrete}	φ N _{cbg} [lb]	N _{ua} [lb]			
5,331	0.650	3,465	3,444	_		

www.hilti.com

Company: Address:		Page: Specifier:	5
Phone I Fax:	I	E-Mail:	
Design: Fastening point:	A4- IBC KBTZ	Date:	1/11/2024

4 Shear load

	Load V _{ua} [lb]	Capacity ¢ V _n [lb]	Utilization $\beta_v = V_{ua} / \Phi V_n$	Status
Steel Strength*	81	3,177	3	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	323	11,196	3	OK
Concrete edge failure in direction y+**	323	3,875	9	OK

* highest loaded anchor **anchor group (relevant anchors)

4.1 Steel Strength

V_{sa}	= ESR value	refer to ICC-ES ESR-4266
	$_{el} \geq V_{ua}$	ACI 318-19 Table 17.5.2

Variables

A _{se,V} [in. ²]	f _{uta} [psi]
0.05	120,104

Calculations

V _{sa} [lb]	
4,887	

Results

V _{sa} [lb]	φ _{steel}	φ V _{sa} [lb]	V _{ua} [lb]
4,887	0.650	3,177	81

www.hilti.com

Company:		Page:	6
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	A4- IBC KBTZ	Date:	1/11/2024
Fastening point:			

4.2 Pryout Strength

$V_{cpg} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-19 Eq. (17.7.3.1b)
$\phi V_{cpg} \ge V_{ua}$	ACI 318-19 Table 17.5.2
A _{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	
$A_{\rm Nc0} = 9 h_{\rm ef}^2$	ACI 318-19 Eq. (17.6.2.1.4)
$\psi_{ec,N} = \left(\frac{1}{1 + \frac{2 e_N}{3 h_{ef}}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.3.1)
$\Psi_{ed,N} = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\begin{split} \psi_{cp,N} &= MAX \left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}} \right) \leq 1.0\\ N_{b} &= k_{c} \ \lambda_{a} \ \sqrt{f_{c}} \ h_{ef}^{1.5} \end{split}$	ACI 318-19 Eq. (17.6.2.6.1b)
$N_{b} = K_{c} \lambda_{a} \sqrt{f_{c}} h_{ef}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]
2	2.500	0.000	0.000	3.250
$\Psi_{c,N}$	c _{ac} [in.]	k _c	λ _a	f _c [psi]
			1.000	4,000

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\Psi_{\text{ec1,N}}$	$\Psi_{ec2,N}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]	
110.25	56.25	1.000	1.000	0.960	1.000	4,250	
Results							
V _{cpg} [lb]	ϕ_{concrete}	φ V _{cpg} [lb]	V _{ua} [lb]	_			
15,994	0.700	11,196	323	-			

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

Company:		Page:	7
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	A4- IBC KBTZ	Date:	1/11/2024
Fastening point:			

4.3 Concrete edge failure in direction y+

$V_{cbg} = \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ec,V} \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_{b}$	ACI 318-19 Eq. (17.7.2.1b)
$\phi V_{cbg} \ge V_{ua}$	ACI 318-19 Table 17.5.2
A _{Vc} see ACI 318-19, Section 17.7.2.1, Fig. R 17.7.2.1(b)	
$A_{Vc0} = 4.5 c_{a1}^2$	ACI 318-19 Eq. (17.7.2.1.3)
$\Psi_{ec,V} = \left(\frac{1}{1 + \frac{e_v}{1.5c_{a1}}}\right) \le 1.0$	ACI 318-19 Eq. (17.7.2.3.1)
$\Psi_{\text{ed},V} = 0.7 + 0.3 \left(\frac{c_{a2}}{1.5c_{a1}} \right) \le 1.0$	ACI 318-19 Eq. (17.7.2.4.1b)
$\psi_{h,V} = \sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0$	ACI 318-19 Eq. (17.7.2.6.1)
$V_{b} = \left(7 \left(\frac{l_{e}}{d_{a}}\right)^{0.2} \sqrt{d_{a}}\right) \lambda_{a} \sqrt{f_{c}} c_{a1}^{1.5}$	ACI 318-19 Eq. (17.7.2.2.1a)

Variables

c _{a1} [in.]	c _{a2} [in.]	e _{cV} [in.]	$\Psi_{\text{c,V}}$	h _a [in.]
3.250	3.250	0.000	1.000	5.000
l _e [in.]	λ_{a}	d _a [in.]	f _c [psi]	$\Psi_{\text{ parallel},V}$
2.500	1.000	0.375	4,000	2.000

Calculations

A _{vc} [in. ²]	A _{Vc0} [in. ²]	$\Psi_{\text{ec,V}}$	$\psi_{\text{ed},V}$	$\psi_{h,V}$	V _b [lb]
56.67	47.53	1.000	1.000	1.000	2,321
Results					
V _{cbg} [lb]	ϕ_{concrete}	φ V _{cbg} [lb]	V _{ua} [lb]	_	
5,536	0.700	3,875	323	-	

5 Combined tension and shear loads, per ACI 318-19 section 17.8

β _N	β _V	ζ	Utilization $\beta_{N,V}$ [%]	Status	
0.994	0.083	1.000	90	OK	

 $\beta_{\rm NV}=\left(\beta_{\rm N}+\beta_{\rm V}\right)/\,1.2<=1$

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com			
Company:		Page:	8
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	A4- IBC KBTZ	Date:	1/11/2024
Fastening point:			

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- · Refer to the manufacturer's product literature for cleaning and installation instructions.
- · For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions (MPII). Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

www.hilti.com					
Company:		Page:	9		
Address:		Specifier:			
Phone I Fax:		E-Mail:			
Design:	A4- IBC KBTZ	Date:	1/11/2024		
Fastening point:					
7 Installation da	ata				
		Anchor type and diameter: Kwik B	olt TZ2 - SS 304 3/8 (2		
		1/2) hnom3			
Profile: no profile		Item number: 2210245 KB-TZ2 3/	Item number: 2210245 KB-TZ2 3/8x5 SS304		
Hole diameter in the fixture: $d_f = 0.438$ in.		Maximum installation torque: 361	Maximum installation torque: 361 in.lb		
Plate thickness (input): 0.375 in.		Hole diameter in the base materia	Hole diameter in the base material: 0.375 in.		
Recommended plate thickness: not calculated		Hole depth in the base material: 3	Hole depth in the base material: 3.250 in.		

Drilling method: Hammer drilled

Cleaning: Manual cleaning of the drilled hole according to instructions for use is required.

Minimum thickness of the base material: 5.000 in.

Hilti KB-TZ2 stud anchor with 3 in embedment, 3/8 (2 1/2) hnom3, Stainless steel, installation per ESR-4266

7.1 Recommended accessories

Drilling	Cleaning			Setting
Suitable Rotary HammerProperly sized drill bit	Manual blow-out pump			Torque controlled cordless impact toolTorque wrenchHammer
	2.500	у 2.500		
-		2.000	-	
			L	1
	3	_4	2.500	•

3.500 2.500 1 2 0.750 0.750 3.500 0.750

Coordinates Anchor [in.]

Anchor	x	У	C _{-x}	C+x	C_y	c _{+y}
1	-1.750	-1.750	3.250	-	-	6.750
2	1.750	-1.750	6.750	-	-	6.750
3	-1.750	1.750	3.250	-	-	3.250
4	1.750	1.750	6.750	-	-	3.250

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

/ww.hilti.com					
Company:		Page:	10		
Address:		Specifier:			
Phone I Fax:		E-Mail:			
Design:	A4- IBC KBTZ	Date:	1/11/2024		
Fastening point:					

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

APPENDIX B: 3RD PARTY TESTING

(NOTE RICE ENGINEERING DID NOT PERFORM THE TESTING. THIS IS INCLUDED FOR REFERENCE PURPOSES ONLY AND IS NOT CONSIDERED PART OF THE SIGNED/SEALED SUBMITTAL.

Aluminum Post Strength Performance Test Report

Rendered To: STAR Systems International, LLC.

> Report No.: QCT19-5620.01

Test Date(s): November 22, 2019

Report Date: December 11, 2019

QUAST CONSULTING AND TESTING, INC. Exterior Façade/Fenestration Consulting Testing 1055 Indianhead Drive • Mosinee, WI 54455-0241 • Phone: 715-693-TEST (8378) • Fax: 715-693-0689

www.qct-usa.com

ALUMINUM POST STRENGTH PERFORMANCE TEST REPORT

Rendered to:

STAR Systems International, LLC 7465 Conway Avenue Burnaby, B.C. Canada, V5E 2P7

> Report No.: QCT19-5620.01 Test Dates: 11/22/2019 Report Date: 11/25/2019 Test Report Retention Date: 11/22/2021

Project Summary:

Quast Consulting and Testing, Inc. was contracted by STAR Systems International, LLC to perform strength testing on aluminum posts. The posts were supplied by STAR Systems International, LLC. and tested at Quast Consulting and Testing Laboratory located in Mosinee, WI. Test specimen description and results are reported herein.

Test Specimen: (See Appendix A)

The aluminum mounting plate was $5" \ge 5" \ge 3/8"$ thick with four bolt holes spaced 3/4" from edges. A 2" tall $1-3/4" \ge 1-3/4"$ aluminum I-section with 1/4" web and 5/32" flanges was welded to the center of the mounting plate. A 2" $\ge 2" \ge 1/8"$ thick aluminum post was fit over the I-Section and welded to the mounting plate on all sides. The post was bolted to a rigid steel W-section using $1/2-13 \ge 2-1/4"$ long A307 steel bolts.

Test Procedure: (See Photo #1)

In order to facilitate loading, a steel collar was fitted over the post with its horizontal centerline positioned 42" from the bottom of the mounting plate. Load was applied to the collar horizontally and parallel to the web of the aluminum I-section insert. Load was measured using a load cell. Horizontal deflection at the point of load application was measured using a string potentiometer. A data acquisition program was used to generate load vs deflection data for each test. Peak load and pulling rate were tabulated as results. See Appendix B for Load vs Deflection graphs of all tests.

Photo #1: Test Setup

Test Results: (See Appendix C for photos of failed posts)

Post #	Peak Force (lbf)	Pulling Rate (in/min)	Failure Location
1	534	1.2	weld-post
2	521	0.8	weld-post
3	556	1.2	weld-post
4	583	0.7	weld-post and post
5	568	1.5	weld-post and throat
6	584	2.5	post
7	538	2.5	weld-post and post
8	573	2.3	weld-post and post
9	475	3.1	weld-post
10	480	2.3	weld-post and post
11	499	2.5	weld-post
12	572	2.7	throat
13	489	3.2	weld-post and throat
14	538	3.4	weld-post and throat
15	514	3.6	weld-post
Average	535	2.2	
Standard Deviation	37.6		

Drawing Reference: The test specimen drawings have been reviewed by Quast Consulting and Testing, Inc. and are representative of the test specimen reported herein.

List of Official Observers:

Name:	Company:	
Brian Sasman	Quast Consulting and Testing, Inc.	
Arlen Fisher	Quast Consulting and Testing, Inc.	
Norm Plumb	STAR Systems International, LLC.	
Paul Zen	East West Alum Craft Ltd	
Tony Dente	East West Alum Craft Ltd	

Electronic records of data sheets, drawings, correspondence, this report, or other pertinent project documentation will be retained for a period of 10 years from the test completion date. Physical respresentative samples of the test specimen will be retained for a period of 2 years from the test completion date. At the end of this retention period, such material shall be discarded without notice and the service life of this report will expire.

Results obtained are tested values and were secured by using the designated test methods. This report does not constitute certification of this product nor an opinion or endorsement by this laboratory. It is the exclusive property of the client so named herein and relates only to the specimens tested. This report may not be reproduced, except in full, without the written approval of Quast Consulting and Testing, Inc.

QUAST CONSULTING & TESTING, INC.

QUAST CONSULTING & TESTING, INC.

Arlen Fisher, P.E. Project Manager Brian M. Sasman, P.E. Reviewer

Attachments: This report is complete only when all attachments listed are included.
Appendix A: As-Built Drawings (1 Page)
Appendix B: Load vs Deflection Graphs (8 Pages)
Appendix C: Photos of Failed Posts (8 Pages)

Appendix **B**

Appendix C

(number printed on post is opposite of pulling direction)

